Anatomical objects in medical images very often have dual contours or surfaces that are highly correlated. Manually segmenting both of them by following local image details is tedious and subjective. In this study, we proposed a two-layer region-based level set method with a soft distance constraint, which not only regularizes the level set evolution at two levels, but also imposes prior information on wall thickness in an effective manner. By updating the level set function and distance constraint functions alternatingly, the method simultaneously optimizes both contours while regularizing their distance. The method was applied to segment the inner and outer wall of both left atrium (LA) and left ventricle (LV) from MR images, using a rough initialization from inside the blood pool. Compared to manual annotation from experience observers, the proposed method achieved an average perpendicular distance (APD) of less than 1mm for the LA segmentation, and less than 1.5mm for the LV segmentation, at both inner and outer contours. The method can be used as a practical tool for fast and accurate dual wall annotations given proper initialization.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.