In the beam control system, the correction of optical axis is an essential process of the optical system. Adjusting the installation angle of the relay mirror is an effective way to change the optical axis direction. However, due to the forced deviation of the installation angle from the theoretical design value, the supporting structure will produce greater stress, which will affect the surface accuracy of the mirror. Therefore, we present an optimization method that can reduce the sensitivity of mirror surface. First, the surface sensitivity is introduced to measure the surface accuracy under the forced deflection angle. Second, the external response function of surface sensitivity is realized by combining dynamic link library and MATLAB. At last, the topological structure is optimized with the sum of the sensitivity weights of two cases as the objective function and the dynamic resonance frequency as the constraint. The optimized structure shows that the surface sensitivity around the x axis decreases from 2.58 nm / ± 1 ″ to 0.32 nm / ± 1 ″ , and the surface sensitivity around the y axis decreases from 3.75 nm / ± 1 ″ to 0.09 nm / ± 1 ″ .
The thermal induced effect errors including the surface distortion of heated mirror and micro-thermal turbulence fluctuation at the optical surface dramatically degrade the image quality of the telescope. To address the problem, we have proposed an air-knife system consisting of an annular flushing subsystem and a central sucking subsystem and reported its simulation analysis. This paper presents the detailed experimental performance of the air-knife thermal control system. The scaling experiment is conducted in a thermo-cycling experiment room with different environmental conditions, where the temperature fluctuations and wavefront perturbation of the scaling mirror can be accurately measured. It is shown from the experimental results that the approximately laminar forced air flow at the optical surface does blow away the turbulence fluctuation and not induce novel low order wavefront aberrations. Meanwhile, the air knife system contributes to the stability of the thermal boundary layer and enhances the convective heat exchange between mirror and air around. As a result, the air-knife system significantly decreases the surface-to-air temperature difference and improves the image quality with a thermal response. Furthermore, it is found that thermal control efficiency is less significant with the increase of the air intake flow or the decrease of the surface-to-air temperature difference. The scaling experiment results demonstrate the practicability of the air-knife thermal control system for large-aperture primary mirror.
Limited by the size and weight of prism and optical assembling, Rotational Risley-prism-array system is a simple but effective way to realize high power and superior beam quality of deflecting laser output. In this paper, the propagation of the rotational Risley-prism-array-based Gaussian beam array in atmospheric turbulence is studied in detail. An analytical expression for the average intensity distribution at the receiving plane is derived based on nonparaxial ray tracing method and extended Huygens-Fresnel principle. Power in the diffraction-limited bucket is chosen to evaluate beam quality. The effect of deviation angle, propagation distance and intensity of turbulence on beam quality is studied in detail by quantitative simulation. It reveals that with the propagation distance increasing, the intensity distribution gradually evolves from multiple-petal-like shape into the pattern that contains one main-lobe in the center with multiple side-lobes in weak turbulence. The beam quality of rotational Risley-prism-array-based Gaussian beam array with lower deviation angle is better than its counterpart with higher deviation angle when propagating in weak and medium turbulent (i.e. Cn2 < 10-13m-2/3), the beam quality of higher deviation angle arrays degrades faster as the intensity of turbulence gets stronger. In the case of propagating in strong turbulence, the long propagation distance (i.e. z > 10km ) and deviation angle have no influence on beam quality.
KEYWORDS: Mirrors, Telescopes, Optical instrument design, Space telescopes, Active optics, Optical components, Control systems, Actuators, Fluctuations and noise, Cooling systems
For a better understanding and forecasting of the universe, the high resolution observations are needed. The largeaperture telescope is an integrated success with a combination of material, mechanics, optics and electronics. The telescope is a classic Cassegrain configuration with open structure, alt-azimuth mount, and retractable dome. The instrumentation has a rotating mass of approximately 52 tons and stands over 9 m tall. The 3-m aperture primary mirror is a honeycomb lightweighted mirror with fused silica material and active cooling. The paper will address preliminary design and development of the telescope mount structure, axes drive system, encoder mount and primary mirror system. The structure must have the best performance of stiffness and stability to demand an acceptable image quality. As the largest optical element of the telescope, primary mirror must be well controlled and protected both during operational and non-operational periods. An active cooling system of primary mirror is provided by a flushing subsystem at the front side and sucking subsystem on the central hole to keep the temperature of the facesheet close to that of ambient air. A two-layer mirror cover mounted on the elevation ring is proposed to protect the optical elements and inner beam tube from dust, dirt and debris. Furthermore, the latest plans for future upgrades will be also described.
Rotational Risley-prism-array system is an effective way to realize high power and high beam quality of deflecting laser output. In order to reveal the quality performance of deflecting beam, the beam compression in the direction of deflection and far field energy centrality of a hexagonal-distributed 7-Gaussian beam array based on rotational Risley-prism-array were studied in detail in this paper. The analytic formulae of the pointing position for the outgoing beam based on the prisms’ rotational angles are calculated by using nonparaxial ray tracing method. Then, the analytical expression for intensity propagation was derived based on the extended Huygens-Fresnel principle. From the irradiance distribution and PIB curve in the focal plane, the quantitatively simulation shows that the beam compression will be more significant as the deflecting angle of emergent increases. The energy centrality will decrease as the propagation distance increases, the fill factor decreases and the deviation angle increases. The mathematical model and calculation results can offer a reference for optical engineering application.
Shipboard optical measurement equipment is affected by ship swaying, and a fixed order, such as “yaw, pitch and roll”, is always adopted to realize the mutual conversion between the earth reference frame and the deck reference frame. This paper simulates the solving model on six different coordinate transformation orders, finds that its error is great and it will affect the shipboard optical measurement equipment’s pointing precision of LOS (line of sight), so we put forward a LOS stabilization model based on subdivision iterative algorithm. Through the simulation and analysis, the new model can let all coordinate calculation value of different switching sequence converge to the true value, and it will improve the accuracy of existing solution model. The method is significant to improve the tracking control accuracy and data processing precision of angular measurement.
KEYWORDS: Control systems design, Mirrors, Control systems, Fuzzy logic, Device simulation, Nonlinear control, Electronics, Quality systems, Signal generators, Seaborgium
The structure parameters of fast-steering mirror (FSM) might change with time goes by. In order to reduce the impact of this change on the output performance of FSM system, an incomplete derivative fuzzy PID control system is proposed. This control system can effectively improve the time domain quality of FSM system by optimizing the PID control parameters online. First, the dynamic model of FSM is established. Second, the initial parameters of the incomplete derivative PID control system are designed according to the frequency domain quality of the closed-loop system. Then, the rules and related factors of the fuzzy controller are designed on the basis of the initial parameters. Finally, simulation experiments are carried out. The results show that the incomplete derivative PID control system has shorter adjustment time, less overshoot and lower dependence on the parameters of FSM when compared with the fixed parameters PID control system.
Thermal blooming effect of gas on laser propagation can seriously degrade performance of far-field beam quality and energy distribution. Numerical simulation is carried out to study the influences of thermal blooming on laser propagation in line pipes. A physical model of thermal blooming effect of gas on laser propagation in an aspirating pipe is established. Axial flow and suction in the outlet are used to attenuate the thermal blooming effect. Based on the computational fluid dynamics (CFD) software, stable calculation of flow field is carried out first, then the optical field and the fluent field is coupling calculated by means of user defined function (UDF). The results show that radial flow is enhanced in the aspirating pipe and the index of refraction gradient caused by thermal blooming effect is decreased. It is indicated that the beam quality of the outlet is improved compared with the pipe model without aspirating. The optical path difference (OPD) distribution of the outlet is analyzed and decomposed by Zernike polynomials. It is shown that the defocus item of 4m aspirating pipe is decreased more than an order of magnitude compared with the 4m pipe without aspirating.
In order to improve the dynamic stiffness of telescope mount, the accuracy of aiming and stability of optical system, a topology optimization method based on the theory of variable density and taking maximum stiffness as objective function is studied. In the topology optimization analysis of elevation ring, one of the most important members of the telescope mount, two kinds of structural are designed: one is a traditional plate welding structure and the other is a combination of plate welding and truss welding. Furthermore, the stiffness and modal performance of the elevation ring in different performances are analyzed and compared. The results show that in meeting the strength and stiffness of the premise, the mass of elevation ring with plate welding and truss welding is 7.00T and the moment of inertia is 11.94 t•m2. What`s more, the total deformation in the horizontal direction and the zenith direction are 6.70μm and 55.86μm, respectively; the stress is within stress range of material's promise; the modal is 105.9Hz.Compared with the traditional structural with plate welding, this new structural design approached to ensure the dynamic stiffness while effectively reducing its own weight with reduction rate 10.7% and moments of inertia with reduction rate 12.3%. This new structural of plate welding and truss welding has obvious advantages in lightweight design. This new design method based on topology optimization will provide efficient help to later components design of the telescope mount.
We present a coherent approach of complex amplitude reconstruction, termed aperture-resizing Fourier ptychography (FP). The reported approach resizes the pupil size of an imaging system and captures the corresponding intensity images. The acquired images are then synthesized in the frequency domain via iteration computation to reconstruct a complex sample wavefront without known phase information and interferential optics. Like holography, it is capable of reconstructing all information of the object. The reported aperture-resizing FP may find wide applications in 3D refocusing, 3D object tracking, remote sensing and microscopy.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.