We report on the stabilization of a semiconductor laser's frequency, using Rb absorption lines. In order to improve overall frequency stability within our system, we adjusted the setup used in Rb- saturated absorption spectroscopy, and optimized modulation parameters such as modulation - frequency and -width, to more accurately detect the error signal. When we stabilized laser frequency using a Doppler-free absorption line of Rb atoms, a time-constant of 0.01sec, and a modulation frequency of 7.77kHz, relative optical frequency stability of 2.12×10-12≤σ(2,τ)≤5.88×10-11 was achieved, in averaging time for 0.04s≤τ≤65s.
We report on the stabilization of a semiconductor laser’s frequency, using spectra-controlled etalon. As the spectra of an etalon are controlled by one of the Rb absorption lines, they provide highly stable reference frequencies in a broad frequency range. When we adapted the PEAK method to the etalon’s spectra and used a Doppler-free absorption line of Rb atoms as the control signal for the newest model of our system, relative optical frequency stability of 2.91x10-11≤σ(2,τ)≤3.72x10-10 was achieved in averaging time for 0.04s≤τ≤100s.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.