In this study, Cylindrical Diffusing Optical Fiber Probe (CDOFP) is used for tumor treatment using Photolon-based photodynamic therapy induced apoptosis and necrosis in thyroid papillary carcinoma (BCPAP) cells. In conclusion, owing to multiple advantageous properties of Photolon as a PDT agent, including preferential accumulation in tumor, biodegradability and unprecedented photosensitizer packing, we evaluate Photolon mediated PDT as a minimally invasive, tumor specific treatment for thyroid cancer. the Photolon-PDT inhibited the growth of human papilloma thyroid cancer cells and effectively decreased xenograft tumor progression in both 10mm and 15mm diffusing length probe. Therefore, this study preliminarily suggests the use of CDOFP and Photolon-PDT for more effective treatment of human thyroid cancer.
In this study, cylindrical diffusing optical fiber probe (CDOFP) used for tumor treatment using PDT method is developed and analyzed. Diffusing beam profile of 5mm to 40mm tip length probe is produced and analyzed using laser scribing equipment developed in a previous research. Ball tip at the tip of CDOFP was developed for easier infiltration of tissues and the beam profile of such tip is reviewed. Additionally, CDOFP for PDT tumor treatment was used for laser coagulation test on animal tissue. CDOFP with diffusing tip length 5mm and 15mm was infiltrated inside a cow's liver tissue to process laser coagulation test. Coagulation and thermal damage was measured with twice the maximum intensity of laser, where maximum intensity in-vivo test is 1W 200J.
Laser-assisted lipolysis has been implemented to reduce body fat in light of thermal interactions with adipose tissue. However, using a flat fiber with high irradiance often needs rapid cannula movements and even undesirable thermal injury due to direct tissue contact. The aim of the current study was to explore the feasibility of a radially diffusing optical applicator to liquefy the adipose tissue for effective laser lipolysis. The proposed diffuser was evaluated with a flat fiber in terms of temperature elevation and tissue liquefaction after laser lipolysis with a 980-nm wavelength. Given the same power (20 W), the diffusing applicator generated a 30% slower temperature increase with a 25% lower maximum temperature (84±3.2°C in 1 min; p<0.001) in the tissue, compared with the flat fiber. Under the equivalent temperature development, the diffuser induced up to fivefold larger area of the adipose liquefaction due to radial light emission than the flat fiber. Ex vivo tissue tests for 5-min irradiation demonstrated that the diffuser (1.24±0.15 g) liquefied 66% more adipose tissue than the flat fiber (0.75±0.05 g). The proposed diffusing applicator can be a feasible therapeutic device for laser lipolysis due to low temperature development and wide coverage of thermal treatment.
Optical fibers have frequently been used for photothermal laser therapy due to its efficiency to deliver laser energy directly to tissue. The aim of the current study was to develop a diffusing optical fiber to achieve radially uniform light irradiation for endoscopically treating urethral stricture. The optical diffuser was fabricated by micro-machining helical patterns on the fiber surface using CO2 laser light at 5 W. Visible light emission (632 nm) and spatial emissions (including polar, azimuthal, and longitudinal emissions) of the fiber tip were evaluated to validate the performance of the fabricated diffuser. Prior to tissue tests, numerical simulation on heat distribution was developed to estimate the degree of tissue coagulation depth during interstitial coagulation. Due to a high absorption coefficient by tissue water, 1470 nm laser was used for photothermal therapy treatment of urethral stricture to obtain a more precise depth profile. For in vitro tissue tests, porcine liver tissue was irradiated with three different power levels (3, 6, and 9 W) at various irradiation times. Porcine urethral tissue was also tested with the diffuser for 10 sec at 6 W to validate the feasibility of circumferential photothermal treatment. The treated tissue was stained with hematoxylin and eosin (H and E) and then imaged with an optical transmission microscope. The spatial emission characteristics of the diffusing optical fiber presented an almost uniform power distribution along the diffuser tip (less than 10% deviation) and around its circumference (less than 5% deviation). The peak temperature in simulation model at the tissue interface between the glass-cap and the tissue was 373 K that was higher than that at the distal end. The tissue tests showed that higher power levels resulted in lower coagulation thresholds (e.g., 1 sec at 9 W vs 8 sec at 3 W). Furthermore, the coagulation depth was approximately 20% thinner than the simulation results (p<0.001). The extent of coagulation thickness in urethral tissue was measured to be 1.3±0.2 mm, which was slightly thicker (18%) than the liver testing (1.1±0.1 mm) under the same conditions (p < 0.001). The proposed optical diffuser may be a feasible tool to treat the urethral stricture in a uniform manner.
Low-level light irradiation (LLLI) reported to stimulate the proliferation or differentiation of a variety of cell types. However, very little is known about the effect of light therapy on stem cells. The aim of the present study was to evaluate the effect of LLLI on the molecular physiological change of human bone marrow derived stem cells (hBMSC) by wavelength (470, 630, 660, 740 and 850, 50mW). The laser diode was performed with different time interval (0, 7.5, 15, 30J/cm2, 50mW) on hBMSC. To determine the molecular physiological changes of cellular level of hBMSC, the clonogenic assay, ATP assay, reactive oxygen species (ROS) detection, mitochondria membrane potential (MMPΦ) staining and calcium efflux assay were assessed after irradiation. There was a difference between with and without irradiation on hBMSCs. An energy density up to 30 J/cm² improved the cell proliferation in comparison to the control group. Among these irradiated group, 630 and 660nm were significantly increased the cell proliferation. The cellular level of ATP and calcium influx was increased with energy dose-dependent in all LLLI groups. Meanwhile, ROS and MMPΦ were also increased after irradiation except 470nm. It can be concluded that LLLI using infrared light and an energy density up to 30 J/cm² has a positive stimulatory effect on the proliferation or differentiation of hBMSCs. Our results suggest that LLLI may influence to the mitochondrial membrane potential activity through ATP synthesis and increased cell metabolism which leads to cell proliferation and differentiation.
Low-level laser therapy (LLLT) is a non-thermal phototherapy used in several medical applications, including wound healing, reduction of pain and amelioration of oral mucositis. Nevertheless, the effects of LLLT upon cancer or dysplastic cells have been so far poorly studied. Here we report that the effects of laser irradiation on anaplastic thyroid cancer cells leads to hyperplasia. 650nm of laser diode was performed with a different time interval (0, 15, 30, 60J/cm2 , 25mW) on anaplastic thyroid cancer cell line FRO in vivo. FRO was orthotopically injected into the thyroid gland of nude mice and the irradiation was performed with the same method described previously. After irradiation, the xenograft evaluation was followed for one month. The thyroid tissues from sacrificed mice were undergone to H&E staining and immunohistochemical staining with HIF-1α, Akt, TGF-β1. We found the aggressive proliferation of FRO on thyroid gland with dose dependent. In case of 60 J/ cm2 of energy density, the necrotic bodies were found in a center of the thyroid. The phosphorylation of HIF-1α and Akt was detected in the thyroid gland, which explained the survival signaling of anaplastic cancer cell was turned on the thyroid gland. Furthermore, TGF-β1 expression was decreased after irradiation. In this study, we demonstrated that insufficient energy density irradiation occurred the decreasing of TGF-β1 which corresponding to the phosphorylation of Akt/ HIF-1α. This aggressive proliferation resulted to the hypoxic condition of tissue for angiogenesis. We suggest that LLLT may influence to cancer aggressiveness associated with a decrease in TGF-β1 and increase in Akt/HIF-1α.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.