The plasma induced when laser interacts with matter (solid, gas, etc.) can radiate a wide range of electromagnetic waves. Its electromagnetic radiation bands range from extreme ultraviolet, ultraviolet, visible, infrared, terahertz to radio frequency microwave. Radiation in these wavelength bands has a wide range of applications, so it is of great significance to study laser plasma radiation. We studied the characteristics of nanosecond laser (1064nm, 8ns) induced plasma optical radiation. The influence of the laser parameters on the plasma radiation intensity and the time evolution of the radiation were obtained. Furthermore, we the obtained effect of the characteristics of the target on the radiation characteristics of the plasma. Finally, we calculated the electron temperature of the air plasma. The experimental results show that: the linear spectrum in the visible spectrum of laser-induced air plasma is mainly the ion spectrum of nitrogen and oxygen; as the laser energy increases the intensity of visible light radiation of air and Al plasma is gradually increasing; when the delay is 15ns, the spectral line intensity reaches the maximum; as the laser energy increases, the plasma electron temperature increases.
Compared with the traditional spectral analysis methods, such as inductively coupled plasma mass spectrometry method, atomic absorption spectrometry method, the analysis sensitivity, accuracy and spectral resolution of the laser induced breakdown spectroscopy technology is relatively lower. Due to the advantages o f low ablation thresholds, high-spatial resolution, minimal invasion, high-efficiency transportation of femtosecond laser, the femtosecond laser induced breakdown spectroscopy method (fs-LIBS) has become an active topic in recent years. In order to further improve the analysis performance of fs-LIBS, the spatial confinement method is proposed. In this paper, the cavity confinement enhancing effect of fs-LIBS is discussed. Based on the local thermal equilibrium condition (LTE) assumption, the plasma temperature and electron density is obtained. The results shown that the plasma emission intensity, plasma temperature and electron density are improved under the given cavity constraints. In effect, the plasma generated shock wave encounters cavity barriers during its expansion, the shock wave is reflected back to the plasma center. One hand is improved the plasma temperature and electron density, on the other hand is increased the number of particles in the upper energy level, which leads to an increase in the intensity of the plasma emission spectrum. In general, the spatial confinement method combined with the fs-LIBS showed its great potential in improving the figures-of-merit of ultrafast optical LIBS technology.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.