Based on Gaussian mixture model, an improved detection algorithm, which aimed at updating the real-time character and accuracy of the moving target detection in intelligent video surveillance systems effectively, is elaborated in this paper. It combines the advantages of GMM and improved maximum between class variance method. The algorithm not only improves the speed of detecting targets in the intelligent systems, but also solves the inherent problems efficiently in poor real-time performance and error detection problem. In conclusion, the experiment results demonstrated that the algorithm has an excellent adaptability and anti-interference performance to fit the complicated situation and changing environment.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.