KEYWORDS: Animals, Modeling, Digital photography, Color, Evolutionary algorithms, Artificial intelligence, Systems modeling, Visualization, Computer simulations, RGB color model
The object of the study is the procedure for modeling adaptive strategies for the functioning of the protective coloration of a frog (Pelophylax esculentus) using Altshuller’s innovation algorithm. Verbal modeling by means of the Altshuller’s innovation algorithm using natural language was duplicated by the use of artificial intelligence tools. The systemic aspects of the functioning of the protective coloration of animals are extremely complex. This complexity sometimes creates obstacles of a fundamental nature for their formalized description. We are talking about a formalized description by means of mathematics and computer science. This problem can be solved by using verbal modeling by means of natural language. In particular, the means that are used in the Altshuller’s innovation algorithm. With the use of these means were formulated: the ideal goal of the functioning of the leaking coloration of the animal, the contradiction that impedes the achievement of this goal, the way to resolve this contradiction. As a goal, an adaptive strategy for the functioning of the protective coloration of the animal, which ensures its camouflage and prevents its unmasking, was adopted. The achievement of this goal is hampered by the contradiction in the requirements for the diversity of the protective coloration of the animal. The approach presented in this paper to the study of adaptive strategies for the functioning of the protective coloration of animals is interesting for the development of remote (aerospace) methods for recording aquatic animals.
KEYWORDS: Visualization, 3D modeling, Skin, Image acquisition, Performance modeling, 3D image processing, Data modeling, Light sources and illumination, Light sources, Process modeling
New modifications of the Cook-Torrance and Ward models are proposed, which differ from the known uses when calculating only one function and smaller degrees of polynomials, which makes it possible to improve the performance of three-dimensional image formation taking into account the offset properties of surfaces.
The given data on the optical arrangement, in which the coordinate distributions of the real and imaginary component of the elements of the Jones matrix of optically thin polycrystalline layers are determined. Algorithms are presented and an experimental method for measuring the real and imaginary component of Jones-matrix images is analyzed. The experimental results of the study of statistical, correlation, and fractal parameters, which characterize the real component of the Jones-matrix image of polycrystalline networks of flat layers of the main types of human amino acids, are presented.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.