KEYWORDS: Satellite communications, Meteorology, Signal attenuation, Ka band, X band, Receivers, Satellites, Signal to noise ratio, Antennas, Systems modeling
This paper investigates weather effects on a satellite communication (SATCOM) link communication channel model. Specifically, rain attenuation in the Ka band and X band of the SATCOM link for both uplink and downlink scenarios are presented. The weather model for the SATCOM link uses a Markov chain model with an average probability and transition probability for different states of weather, to investigate the impact of dynamic weather on the SATCOM link channel propagation model. Also, a power control method is proposed to achieve the required carrier to noise ratio in a SATCOM scenario using a Bayesian Network in Netica. The Bayesian Network models the space-ground link geometry and transmit power control to adapt to the dynamic weather. Simulations are implemented for the weather states during relatively long and short periods, path loss variations, and transmit power distributions over different scenarios. The simulation results demonstrate the effectiveness of the proposed weather model, Markov chain model, and the power control method for SATCOM.
Game theory is a useful method to model interactions between agents with conflicting interests. In this paper, we set up a Game Theoretic Model for Satellite Communications (SATCOM) to solve the interaction between the transmission pair (blue side) and the jammer (red side) to reach a Nash Equilibrium (NE). First, the IFT Game Application Model (iGAM) for SATCOM is formulated to improve the utility of the transmission pair while considering the interference from a jammer. Specifically, in our framework, the frame error rate performance of different modulation and coding schemes is used in the game theoretic solution. Next, the game theoretic analysis shows that the transmission pair can choose the optimal waveform and power given the received power from the jammer. We also describe how the jammer chooses the optimal power given the waveform and power allocation from the transmission pair. Finally, simulations are implemented for the iGAM and the simulation results show the effectiveness of the SATCOM power allocation, waveform selection scheme, and jamming mitigation.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.