The wound healing process involves the reparative phases of inflammation, proliferation, and remodeling. Interrupting
any of these phases may result in chronically unhealed wounds, amputation, or even patient death. Despite the clinical
significance in chronic wound management, no effective methods have been developed for quantitative image-guided
treatment. We integrated a multimodal imaging system with a cold atmospheric plasma probe for image-guided
treatment of chronic wound. Multimodal imaging system offers a non-invasive, painless, simultaneous and quantitative
assessment of cutaneous wound healing. Cold atmospheric plasma accelerates the wound healing process through many
mechanisms including decontamination, coagulation and stimulation of the wound healing. The therapeutic effect of cold
atmospheric plasma is studied in vivo under the guidance of a multimodal imaging system. Cutaneous wounds are
created on the dorsal skin of the nude mice. During the healing process, the sample wound is treated by cold atmospheric
plasma at different controlled dosage, while the control wound is healed naturally. The multimodal imaging system
integrating a multispectral imaging module and a laser speckle imaging module is used to collect the information of
cutaneous tissue oxygenation (i.e. oxygen saturation, StO2) and blood perfusion simultaneously to assess and guide the plasma therapy. Our preliminary tests show that cold atmospheric plasma in combination with multimodal imaging
guidance has the potential to facilitate the healing of chronic wounds.
Simultaneous and quantitative assessment of skin functional characteristics in different modalities will facilitate diagnosis
and therapy in many clinical applications such as wound healing. However, many existing clinical practices and
multimodal imaging systems are subjective, qualitative, sequential for multimodal data collection, and need co-registration
between different modalities. To overcome these limitations, we developed a multimodal imaging system for quantitative,
non-invasive, and simultaneous imaging of cutaneous tissue oxygenation and blood perfusion parameters. The imaging
system integrated multispectral and laser speckle imaging technologies into one experimental setup. A Labview interface
was developed for equipment control, synchronization, and image acquisition. Advanced algorithms based on a wide gap
second derivative reflectometry and laser speckle contrast analysis (LASCA) were developed for accurate reconstruction
of tissue oxygenation and blood perfusion respectively. Quantitative calibration experiments and a new style of skinsimulating
phantom were designed to verify the accuracy and reliability of the imaging system. The experimental results
were compared with a Moor tissue oxygenation and perfusion monitor. For In vivo testing, a post-occlusion reactive
hyperemia (PORH) procedure in human subject and an ongoing wound healing monitoring experiment using dorsal
skinfold chamber models were conducted to validate the usability of our system for dynamic detection of oxygenation and
perfusion parameters. In this study, we have not only setup an advanced multimodal imaging system for cutaneous tissue
oxygenation and perfusion parameters but also elucidated its potential for wound healing assessment in clinical practice.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.