Terahertz (THz) communication is a research hotspot in the future communication field. However, limited by the power of the THz source and various particles in the air, indoor THz wireless communication with short distance transmission has practical research value. Due to the strong directivity of THz beam, the line of sight (LOS) path occupies most of the energy of the signal. However, when the LOS path is blocked, the not line of sight (NLOS) path can be used as a supplement to ensure the stability of the communication link. In this paper, a 3D transmission model combining LOS path, primary reflection path and secondary reflection path was established by ray tracing method for indoor laboratory scenes with high demand for communication rate. The carrier frequency range is 220-330GHz. Through the results of power delay profile (PDP) and power angle profile (PAP) at the receiver, the correlation characteristics of important channel parameters such as Rician K-factor, root mean square (RMS) delay spread with different frequency points and different paths are analyzed. The results show that all the channel parameters are strongly correlated with frequency and transmission distance. These theoretical results lay a foundation for the subsequent communication experiments in real experimental condition.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.