When the Satellite-borne very high infrared spectrometer performs atmospheric composition analysis, it needs to use the sun as a light source for occultation detection. The stability of the light source is related to the detection accuracy. In general, it is believed that the light distribution within the maximum solar intensity range is the most stable and it is necessary to accurately identify and track this range. However, due to the inhomogeneous atmosphere and the change of atmospheric density, the solar image will have deformation or block, which affects the accuracy of target recognition and tracking. This paper proposes a multi-objective clustering-based recognition method to solve the problem of accurate multi-target identification under the large dynamic light intensity range, and uses the hardware structure of FPGA+DSP to realize the imaging and tracking system.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.