Reducing carbon emissions is a global priority due to human impact on atmospheric pollution and the greenhouse effect. Achieving carbon peak and neutrality requires real-time monitoring of CO2 concentrations. However, developing high-sensitivity, portable, and anti-jamming gas detection solutions is challenging. Among spectroscopic techniques, Tunable Diode Laser Absorption Spectroscopy (TDLAS) is highly sensitive for detecting CO2 concentrations. This paper elaborates on the principles of TDLAS for detecting CO2 concentrations and proposes a noise reduction algorithm to meet diverse environmental requirements. Simulations were performed using software to simulate CO2 absorption spectra at approximately 1.57866535μm under high-intensity noise (0.1mW - 1mW). Based on this simulation, we applied the Wavelength Modulation Spectroscopy (WMS) technique to calculate the ratio of the output differential signal's second harmonic intensity to the first harmonic S2f/1f(T) and output power to reduce light intensity influence and improve concentration inversion linearity. The weighted convolutional moving average filtering was utilized to optimize WMS denoising, utilizing weight transfer to make the process more precise and reliable. After analyzing various window functions, it was concluded that a window length of 9 would be the most optimal. The algorithm improved the signal-to-noise ratio (SNR) by 22.435% under these conditions. When the noise level increased fourfold from the original signal, the algorithm enhanced the SNR by 59.514%, enabling reliable CO2 monitoring even under challenging conditions.
We propose and experimentally demonstrated a Tunable-Diode-Laser-Absorption-Spectroscopy (TDLAS) system using low-cost tunable DFB laser array. We implement Reconstruction-Equivalent-Chirp (REC) technology for a low-cost DFB laser array which is suitable for TDLAS system. Meanwhile, monolithic integration of multi-wavelength laser array is achieved, covering multiple absorption spectral lines. A gas sensing system for multi-peak detection is built. We chose methane as the interested gas in the experiment. The sensing data for absorption peaks of methane, including 1642.9nm, 1645.5nm, 1650.9nm and 1653.7nm are obtained. The methane concentration is measured as low as 500ppm.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.