Image segmentation is the process of delineating the regions occupied by objects of interest in a given image. This operation is a fundamentally required first step in numerous applications of medical imagery. In the medical imaging field, this activity has a rich literature that spans over 45 years. In spite of numerous advances, including deep learning (DL) networks (DLNs) in recent years, the problem has defied a robust, fail-safe, and satisfactory solution, especially for objects that are manifest with low contrast, are spatially sparse, have variable shape among individuals, or are affected by imaging artifacts, pathology, or post-treatment change in the body. Although image processing techniques, notably DLNs, are uncanny in their ability to harness low-level intensity pattern information on objects, they fall short in the high-level task of identifying and localizing an entire object as a gestalt. This dilemma has been a fundamental unmet challenge in medical image segmentation. In this paper, we demonstrate that by synergistically marrying the unmatched strengths of high-level human knowledge (i.e., natural intelligence (NI)) with the capabilities of DL networks (i.e., artificial intelligence (AI)) in garnering intricate details, these challenges can be significantly overcome. Focusing on the object recognition task, we formulate an anatomy-guided DL object recognition approach named Automatic Anatomy Recognition-Deep Learning (AAR-DL) which combines an advanced anatomy-modeling strategy, model-based non-DL object recognition, and DL object detection networks to achieve expert human-like performance.
OIPAV (Ophthalmic Images Processing, Analysis and Visualization) is a cross-platform software which is specially oriented to ophthalmic images. It provides a wide range of functionalities including data I/O, image processing, interaction, ophthalmic diseases detection, data analysis and visualization to help researchers and clinicians deal with various ophthalmic images such as optical coherence tomography (OCT) images and color photo of fundus, etc. It enables users to easily access to different ophthalmic image data manufactured from different imaging devices, facilitate workflows of processing ophthalmic images and improve quantitative evaluations. In this paper, we will present the system design and functional modules of the platform and demonstrate various applications. With a satisfying function scalability and expandability, we believe that the software can be widely applied in ophthalmology field.
In this paper, a novel approach combining the active appearance model (AAM) and graph search is proposed to segment
retinal layers for optic nerve head(ONH) centered optical coherence tomography(OCT) images. The method includes
two parts: preprocessing and layer segmentation. During the preprocessing phase, images is first filtered for denoising,
then the B-scans are flattened. During layer segmentation, the AAM is first used to obtain the coarse segmentation
results. Then a multi-resolution GS–AAM algorithm is applied to further refine the results, in which AAM is efficiently
integrated into the graph search segmentation process. The proposed method was tested on a dataset which
contained113-D SD-OCT images, and compared to the manual tracings of two observers on all the volumetric scans. The
overall mean border positioning error for layer segmentation was found to be 7.09 ± 6.18μm for normal subjects. It was
comparable to the results of traditional graph search method (8.03±10.47μm) and mean inter-observer variability
(6.35±6.93μm).The preliminary results demonstrated the feasibility and efficiency of the proposed method.
In this paper, we sought to find a method to detect the Inner Segment /Outer Segment (IS/OS)disruption region automatically. A novel support vector machine (SVM) based method was proposed for IS/OS disruption detection. The method includes two parts: training and testing. During the training phase, 7 features from the region around the fovea are calculated. Support vector machine (SVM) is utilized as the classification method. In the testing phase, the training model derived is utilized to classify the disruption and non-disruption region of the IS/OS, and calculate the accuracy separately. The proposed method was tested on 9 patients' SD-OCT images using leave-one-out strategy. The preliminary results demonstrated the feasibility and efficiency of the proposed method.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.