ZnSe:Co thin films were grown on quartz substrates at various ambient pressure by pulsed laser deposition. The propagation of plasma plume, the structure and optical propert ies of films at pressure of 1Pa to 10Pa had been investigated. With the ambient pressure increased, the angle of divergence and propagation distance of plasma plume changed, the crystal structure of films investigated by XRD showed that the crystal quality of films was promoted. The optical band gap and refractive index were analyzed by the transmission spectra. The optical band gap first decrease then increase with increasing deposition pressure, which may be associated with the quantum confinement effect. The refract ive index increased with increasing deposition pressure, which may be due to the promotion of the film density. The dispersion parameters, E0, Ed, the static refract ive index (n0) and static dielectric constant (ε0) were calculated according to the single oscillator model.
ZnO has attracted much attention because of its high-energy gap and exciton binding energy at room temperature. Compared to ZnO thin films, ZnGaO thin films are more resistive to oxidation and have smaller deformation of lattice. In this study, the high purity ZnSe and Ga2O3 powders were weighted at a molar ratio of 18:1. Se was oxidized to Se2O3 and separated from the mixture powders by using conventional solid state reaction method in air, and the ZnGaO ceramic target was prepared. We fabricated the ZnGaO films on silica glass by pulsed laser deposition (PLD) method under different oxygen pressure at room temperature. The as-grown films were tested by X-ray diffraction and atomic force microscope (AFM) to diagnose the crystal structure and surface morphology. Moreover, we obtained the optical transmittance of ZnGaO film and found that the electrical conductivity capacity varied with the increase of oxygen pressure.
The modification of ZnS by doping method is one of the important directions in the research of ZnS nano materials. Doping of transition metal ions in the ZnS matrix has attracted much attention in recent years. Doping transition metal ions can modulate the emission region of ZnS, and improve the efficiency of fluorescence. The doping concentration in ZnS has determined the distribution, absorption, excitation, emission, and structural properties of particles. Due to ZnS:Co crystal materials have the best characteristics: the stability of the mechanical properties, high emission cross section and wide bandgap tuning at room temperature. So the ZnS:Co film is grown by pulsed laser deposition and the near infrared spectrum properties have analyzed that have researched in theory and experiment. We change the pressure in the vacuum chamber by controlling the pressure of the argon gas to fabricated the ZnS:Co film by PLD, at the same time, we chose three kinds of materials as the substrate of the thin film, and compared the characteristics of the thin films. This method has the advantages of short fabrication time and material saving, so it is good for to detect and research the optical properties of the films of ZnS:Co. A variety of film detection of X-ray diffraction, laser particle size analyzer, UV-Vis spectrophotometer, fluorescence spectrophotometer, morphology, the particle size and optical properties of the samples have tested. From the results, the infrared transmittance of the Co doped ZnS is almost above 90%, and the transmission capacity increases with the increase of pressure. The film thickness decreases with the increase of pressure and there is a sharp peak in absorption spectrum, this point has important significance for studying photoluminescence of the near infrared spectrum.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.