
Use of Split Bregman denoising for
iterative reconstruction in fluorescence
diffuse optical tomography

Judit Chamorro-Servent
Juan F. P. J. Abascal
Juan Aguirre
Simon Arridge
Teresa Correia
Jorge Ripoll
Manuel Desco
Juan J. Vaquero



Use of Split Bregman denoising for iterative reconstruction
in fluorescence diffuse optical tomography

Judit Chamorro-Servent,a,b Juan F. P. J. Abascal,a,b Juan Aguirre,c Simon Arridge,d Teresa Correia,d Jorge Ripoll,a,b
Manuel Desco,a,b,c and Juan J. Vaqueroa,b

aUniversidad Carlos III de Madrid, Departamento de Bioingeniería e Ingeniería Aeroespacial, 28911 Leganés, Spain
bInstituto de Investigación Sanitaria Gregorio Marañón, 28007 Madrid, Spain
cCentro de Investigación Biomédica en Red de Salud Mental, 28007 Madrid, Spain
dUniversity College London, Department of Computer Science, London WC1E 6BT, United Kingdom

Abstract. Fluorescence diffuse optical tomography (fDOT) is a noninvasive imaging technique that makes it pos-
sible to quantify the spatial distribution of fluorescent tracers in small animals. fDOT image reconstruction is com-
monly performed by means of iterative methods such as the algebraic reconstruction technique (ART). The useful
results yielded by more advanced l1-regularized techniques for signal recovery and image reconstruction, together
with the recent publication of Split Bregman (SB) procedure, led us to propose a new approach to the fDOT inverse
problem, namely, ART-SB. This method alternates a cost-efficient reconstruction step (ART iteration) with a denois-
ing filtering step based on minimization of total variation of the image using the SB method, which can be solved
efficiently and quickly. We applied this method to simulated and experimental fDOT data and found that ART-SB
provides substantial benefits over conventional ART. © 2013 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1

.JBO.18.7.076016]
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1 Introduction
Fluorescence diffuse optical tomography (fDOT) is a non-
invasive imaging technique that enables quantification of
tomographic [three-dimensional (3-D)] biodistributions of fluo-
rescent tracers in small animals. It is also called fluorescence
molecular tomography in some studies.1–3

The fDOT image reconstruction problem of finding the 3-D
biodistribution of a fluorescence marker f from acquired data d
can be mathematically formulated as a linear system of equations

Wf ¼ d; (1)

where W is an M × N weight matrix that relates the measure-
ments and the unknown fluorescence concentration. fDOT
reconstruction is an ill-posed large scale problem4,5 that has
been solved using a wide variety of reconstruction methods (see
a review in Ref. 6).

The algebraic reconstruction technique (ART) is an exten-
sively applied and cost-efficient reconstruction method that
yields fast and stable reconstruction in experimental diffuse
optical tomography (DOT) and fDOT studies.6–9 It solves the
linear system of Eq. (1) by projecting a solution estimate
onto the hyperplane defined by each row of the linear system.
This computationally efficient approach does not require the
whole matrix W to be held in memory, thus making it practical
for managing large datasets.10

Convergence of ART is always fast during the first few
iterations, after which it can slow down until it stagnates; in
addition, the performance of ART deteriorates with the increase
in data noise level and modeling error frequency.11

l1-regularized approaches are well suited for signal recovery
and image reconstruction and have been widely applied in image
denoising and magnetic resonance imaging reconstruction. They
have also been used in DOT and fDOT.12–14 Douri et al.12 recon-
structed the simulated DOT data by combining a strategy based
on a priori edge information with a diffusion flux analysis of the
local structures at each iteration. Freiberger et al.13 introduced an
alternating direction minimization method to solve l1 regulariza-
tion. This method splits the reconstruction problem for simulated
fDOT data into two subproblems: an l2 stage, solved using a
Gauss-Newton step,6 and an l1 regularization stage, solved by
thresholding (or shrinkage). Correia et al.14 introduced an oper-
ator splitting method for solving the inverse problem of image
reconstruction in fDOT for simulated, phantom, and ex vivo
data with nonlinear anisotropic diffusion and edge priors. Of
the studies presented above, only one actually validated the
method proposed using experimental data.14

The l1 total variation (TV) functional was first introduced by
Rudin, Osher and Fatemi (ROF)15 to address image denoising
problems. It is formulated as

min
f̂
k∇f̂k1 such that kf̂ − fk22 < σ; (2)

where f̂ is the reconstructed denoised image, f is the noisy
image, k · k1 is the l1-norm, k · k2 is the l2-norm, and σ is
an error tolerance included to account for noisy data. TV filters
out noise while preserving edges. It has received considerable
attention in image processing because it presents advantages
over simpler techniques such as linear smoothing, which
reduces noise but smooths edges.Address all correspondence to: Judit Chamorro-Servent, Universidad Carlos III de
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Iterative procedures have been proposed based on the success
of l1 regularization techniques for denoising and image
reconstruction. These alternate an iterative method (such as
simultaneous ART or the expectation–maximization algorithm)
with a denoising step in order to minimize the TV and thus
obtain enhanced results in computed tomography and positron
emission tomography.16–18 Johnston et al. and Pan et al.16,17 used
a standard gradient descent method, whereas Sawatzky18

applied a dual approach to minimize the TV functional.
Consequently, the choice of technique for solving l1 regulariza-
tion-based problems may become crucial, as l1 is nonlinear;
therefore, the computational burden can increase significantly
using classic gradient-based methods.

The recently published Split Bregman (SB) method19 is a
simple and efficient algorithm for solving l1 regularization-
based problems that makes it possible to split the minimization
of l1 and l2 functionals. By applying the SB method to image
denoising and compressed sensing in Ref. 19, the authors
showed that SB was computationally efficient, given that the
SB formulation leads to a problem that can be solved using
Gauss–Seidel and Fourier transform methods.

SB was recently applied for fluorescence tomography
reconstruction.20,21 Abascal et al.20 used SB to solve the optimi-
zation problem by imposing a non-negativity constraint. The
image was updated using a nonlinear Gauss-Newton step6

based on the computation of first and second derivatives of
the nonlinear TV functional. Behrooz et al.21 compared l2 regu-
larization methods and ART with TV reconstruction methods
based on ROF and SB. The authors implemented a precondi-
tioned conjugate gradient method6 in each iteration of SB
that led to slow convergence in some cases. To validate the
method and compare reconstructions, they used a noncontact
constant-wave transillumination fluorescence tomography sys-
tem and concluded that TV regularization has the potential to
offer higher resolution and robustness than conventional l2 regu-
larization algorithms and ART.

The objective of our work was to present a new approach to
solve the fDOT inverse problem, ART-SB. Based on a two-
step iterative procedure, we combined the computationally
efficient reconstruction method ART with a denoising step.
The denoising step is based on the SB formulation and is effi-
ciently implemented using Gauss-Seidel and shrinkage opera-
tions without computing first and second derivatives of the
TV functional.

The ART-SBmethod has been optimized and studied in depth.
Unlike other studies based on shrinkage algorithms, it has been
tested with both simulated and experimental fDOT data.12–14

The organization of this article is as follows. Section 2 intro-
duces the fDOT forward problem, briefly presents the well-
known ART and SB denoising and describes the proposed
ART-SB method. This section also describes data acquisition,
experimental setup, and data simulation and finishes by present-
ing the tools used to compare ART with ART-SB. Section 3
presents the reconstruction and comparative results of simulated
and experimental data. Finally, Sec. 4 presents the discussion
and conclusions.

2 Methods

2.1 fDOT Forward Problem

In order to model the forward problem, we take into account
that, in highly scattering media where light scattering dominates

over absorption, light propagation complies with the diffusion
equation22

ð−∇D∇þ μaÞϕðrÞ ¼ Sðr 0Þ; (3)

whereDðr; λÞ ¼ f3½μaðr; λÞ þ μ 0
sðr; λÞ�g−1 is the diffusion coef-

ficient for a wavelength λ at position r in a domain Ω, μ 0
sðr; λÞ

the reduced scattering term, μaðr; λÞ the absorption term, ϕðrÞ
the average intensity, and Sðr 0Þ the source term at position r 0.

In fDOT, the excitation intensity ϕexðr; λexÞ at excitation
wavelength λex and emission intensity ϕemðr; λemÞ at emission
wavelength λem are given by a pair of diffusion equations.23–25

The excitation intensity is emitted by an external source
q0ðrsÞ at a location rs ∈ Ω, and the emission comes from a fluo-
rescent region characterized by a fluorescence yield fðrflÞ,
which accounts for its quantum efficiency, its absorption param-
eter, and its concentration of fluorescence.

Assuming that the presence of the fluorophore does not affect
the absorption coefficient and that we are working on the steady-
state regime, excitation and emission intensities are given by

− ∇Dðr; λexÞ∇ϕexðr; λexÞ þ μaðr; λexÞϕexðr; λexÞ ¼ q0ðrsÞ
− ∇Dðr; λemÞ∇ϕemðr; λemÞ þ μaðr; λemÞϕemðr; λemÞ

¼ fðrflÞϕexðr; λexÞ: (4)

The diffusion equations can be solved using Green’s function
for a homogeneous medium and canonical geometries23–25 or
using a finite element method for a heterogeneous medium
and general geometries.6

Generalizing, we define a Green function that solves the
heterogeneous problem

½−∇DðrÞ∇þ μaðrÞ�Gðr; r 0Þ ¼ δðr − r 0Þ: (5)

Using this function, the photon density solving Eq. (4) is
given by

ϕexðrÞ ¼
Z

dr 0Gðr; r 0Þq0ðr 0Þ

ϕemðrÞ ¼
Z

dr 0Gðr; r 0Þfðr 0Þϕexðr 0Þ: (6)

In our work, the solutions to Eq. (4) are found with a
Garlekin finite element approach using TOAST, the finite ele-
ments toolbox for DOT,26,27 which was adapted for fDOT.

The normalized data component,28 defined as the quotient
between the fluorescence measurement and the excitation meas-
urement for each source-detector pair, is applied to the data, as
follows:

dbðrdÞ ¼
ϕmeas
em ðrdÞ

ϕmeas
ex ðrdÞ

¼
R
dr 0Gðrd; r 0Þfðr 0Þϕexðr 0ÞR

dr 0Gðrd; r 0Þqðr 0Þ

¼
R
dr 0Gðrd; r 0Þfðr 0Þ

R
dr 0 0Gðr 0; r 0 0Þqðr 0 0ÞR

dr 0Gðrd; r 0Þqðr 0Þ
: (7)

To compute the matrix of the linear system, W, we first dif-
ferentiate the emission photon density with respect to f and dis-
cretize the integral as a sum of all finite elements Ωj. The
variation of emission photon density is given by
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δϕemðrdÞ ¼
X
j

Z
Ωj

drjGðrd; rjÞδexðrd; rsÞδfj

¼
X
j

Z
Ωj

drjϕ̃ðrj; rdÞδexðrj; rsÞδfj; (8)

where δexðrj; rsÞ is excitation photon density at rj induced by a
source at rs, and ϕ̃ðrj; rdÞ is the adjoint field at rj given by a
source ~q0 located at the detector position rd, taking into account
the reciprocity of the Green function. The adjoint field solves the
equation

½−∇DðrÞ∇þ μaðrÞ�ϕ̃ðrÞ ¼ q̃0ðrdÞ: (9)

The element ij of the Jacobian matrixWij relates each meas-
urement ðdbÞi (where i denotes each source-detector pair) to the
concentration of fluorophore at elementΩj and can be written as

Wij ¼
∂ðdbÞi
∂fj

¼ 1

ϕmeas
ex ðrd; rsÞ

Z
Ωj

drjϕ̃ðrj;rsÞϕexðrj;rsÞ:

(10)

Combining the elements of the matrix W, the fDOT linear
system can be expressed as Eq. (1).

2.2 Inverse Problem

We applied two inversion methods: ART and ART-SB.

2.2.1 Reconstruction method: ART

Equation (1) is solved using ART,6–9,11 which modifies the
reconstructed image by projecting from one hyperplane to
another, defined by each row of Eq. (1), as

fitþ1
i ¼ fiti þ λ

di −
P

N
n¼1 winfitnP

N
n¼1 w

2
in

wi; (11)

where fiti is the it’th estimate of the i’th row contribution to the
image f, di the i’th measurement, wi the i’th row vector of the
weight matrix, and λ the relaxation parameter that adjusts
the projection step at each iteration.

As for data ordering, the selection of an appropriate access
order (such as randomized access order) has been shown to
speed up the iterative reconstruction algorithm and generate a
better image.8 Thus, we chose randomized ART in our work.

2.2.2 Two-step reconstruction method: ART-SB

ART-SB is implemented using a two-step iteration:

• The first step corresponds to the minimization problem

fit ¼ min
f̃
kWf̃ − dk22; (12)

which is solved by ART (Sec. 2.2.1).

• The second step corresponds to the denoising problem for
each z-projection

f̃ ¼ min
f̂

TVðf̂Þ þ μ

2
kf̂ − fitk22; (13)

where μ is the weighting parameter for the fidelity term
kf̂ − fitk22 and TV is an anisotropic TV,

TVðf̂Þ ¼ k∇xf̂k1 þ k∇yf̂k1 ¼
���� ∂
∂x

f̂

����
1

þ
���� ∂
∂y

f̂

����
1

;

(14)

that is solved by SB. Thus, the solution f̃ constitutes the
estimate for the next ART iteration. Note that f̃0 ¼
½0; · · · ; 0� ∈ Rn is used as the initial guess in the first
ART call.

The SB method19 that solves Eq. (13) is based on splitting the
problem into two subproblems that are easier to solve. To this
end, our original unconstrained problem of Eq. (13) is trans-
formed into an equivalent constrained problem

min
f̂;Dx;Dy

kDxk1 þ kDyk1 þ
μ

2
kf̂ − fitk22 such that Di ¼ ∇if̂:

(15)

The constraint condition of Eq. (15) is enforced by applying
the Bregman iteration19,29

min
f̂;Dx;Dy

kDxk1 þ kDyk1 þ
μ

2
kf̂ − fitk22 þ

β

2
kDx − ∇xf̂

− bkxk22 þ
β

2
kDy − ∇yf̂ − bkyk22; (16)

where the values of bki given above correspond to the Bregman
iteration [bki ¼ bk−1i þ ð∇if̂

k −Dk
i Þ] and β is the denoising

parameter.
The l1 and l2 components of this functional can now be split

and efficiently solved by SB,19 which iteratively minimizes with
respect to f̂ and Di separately, as follows:

f̂kþ1 ¼ min
f̂

μ

2
kf̂ − fitk22 þ

β

2
kDk

x − ∇xf̂ − bkxk22

þ β

2
kDk

y − ∇yf̂ − bkyk22

Dkþ1
i ¼ min

Di

kDik1 þ
β

2
kDi − ∇if̂

kþ1 − bki k22: (17)

Note that SB decouples f̂ from the l1 portion of the problem,
thus making f̂ differentiable. In order to solve f̂ in a cost-effi-
cient manner, we used the Gauss-Seidel method, as proposed in
Ref. 19:

f̂kþ1
i;j ¼ β

μþ 4β
ðf̂kiþ1;j þ f̂ki−1;j þ f̂ki;jþ1 þ f̂ki;j−1 þDk

x;i−1;j

−Dk
x;i;j þDk

y;i;j−1 −Dk
y;i;j − bkx;i−1;j þ bkx;i;j − bky;i;j−1

þ bky;i;jÞ þ
μ

μþ 4β
fiti;j: (18)

Furthermore, since there is no coupling between elements of
D, we can use shrinkage operators to compute the optimal val-
ues of Dx and Dy separately,
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Dkþ1
i ¼ shrink

�
∇if̂

kþ1 þ bki ;
1

β

�

¼ ∇if̂
kþ1 þ bki

j∇if̂
kþ1 þ bki j

�max

�
j∇if̂

kþ1 þ bki j −
1

β
; 0

�
:

(19)

Further details of shrinkage operators can be found in
Refs. 19 and 30. A summary of the ART-SB algorithm can
be found in Table 1.

2.3 Experimental and Simulated Data

2.3.1 Experimental data

A 10-mm thick slab-shaped phantom was built using a resin
base with added titanium dioxide and India ink to provide a
reduced scattering coefficient of μ 0

s ¼ 0.8 mm−1 and an absorp-
tion coefficient of μa ¼ 0.01 mm−1.31 A 5-mm diameter cylin-
der hole was drilled and filled with a fluid that matched the
optical properties of the resin32 mixed with Alexa fluor 700
1 μM (Invitrogen, Carlsbad, California).

The fDOT fluorescence and excitation data were acquired
with a noncontact parallel plate fDOT scanner (Fig. 1)33,34 com-
prising a constant intensity laser diode (675 nm), a beam deflec-
tor with two mirrors moved by galvanometers that directs the
light emerging from the laser onto the desired points (sources)

of the sample, a charge-coupled device camera, a motorized fil-
ter wheel, and two matched 10-nm filters to capture the excita-
tion photon wavelength (675 nm) or the fluorescence
wavelength (720 nm). All the components are placed inside a
light-shielded box as depicted in Fig. 1. The acquisition process
was controlled using in-house software.

In this work, 9 × 9 source positions and 9 × 9 detector posi-
tions over a 12 × 12 mm2 surface were used. The weight matrix
was calculated as described in Sec. 2.1.

2.3.2 Simulated data

In addition, an equivalent phantom was simulated using a fine
finite element mesh (145,000 nodes). We used the TOAST tool-
box26,27 adapted for fDOT (introduced in Sec. 2.1) to simulate
excitation and fluorescent photon densities and to construct the
weight matrix. Sources were modelled as isotropic point sources
(located at a depth 1∕μ 0

s below the surface) using Dirichlet boun-
dary conditions. This setting resembles a collimated laser as
described in Ref. 27. Measurements were modelled by a
Gaussian kernel centered at the detector location and computed
as a linear operator M acting on the photon density at the boun-
dary of the domain. Thus measured excitation and emission pho-
ton densities at the detector position, rd become ϕmeas

ex ðrdÞ ¼
MϕexðrÞ and ϕmeas

em ðrdÞ ¼ MϕemðrÞ. Afterwards, we calculated
the normalized data component fdbðrdÞ ¼ ½ϕmeas

em ðrdÞ�∕
½ϕmeas

ex ðrdÞ�g and finally solved the linear system matrix as
described in Eqs. (8–10) of Sec. 2.1. The average intensity
for the weight matrix was reconstructed on a coarser finite
element mesh (55,000 nodes) and mapped into a uniform
mesh of 20 × 20 × 10 voxels. The number of sources, number
of detectors, and the surface covered by them were equal to
those used with the experimental data.

The simulation was perturbed with different levels of addi-
tive Gaussian noise (1, 3, 5 and 10%).

The target, ftrue, corresponding to the physical slab geometry
phantom with a cylindrical region filled with fluorophore was
modelled using the same finite element mesh used for the simu-
lated data and subsequently mapped into a uniform mesh
of 20 × 20 × 10 voxels.

Table 1 ART-SB algorithm.

ART-SB algorithm

f̃ 0 ¼ ½0;0; ···;0� ∈ RN

while kf̃ it − f̃ it−1k22 > tol 1 (where tol 1 is a given tolerance)

Step 1: ART iteration loop

f it ¼ minf̃ itkWf̃ it − dk22 by ART (11)

Step 2: SB for each z-projection:

for ξ ¼ 1: : : nz (z -projection loop, nz is the number of z -slices)

f 0ξ ¼ f itðx; y; ξÞ, D0
x ¼ D0

y ¼ b0
x ¼ b0

y ¼ 0

while
���f̂ kξ − f̂

k−1
ξ

���
2
> tol 2 (SB loop)

f̂
kþ1
ξ ¼ min

f̂ ξ

μ
2

���f̂ ξ − f itξ
���2
2
þ β

2

���Dk
x − ∇x f̂ ξ − bk

x

���2
2
þ β

2

���Dk
y − ∇y f̂ ξ − bk

y

���2
2by (18)

Dkþ1
x ¼ minDx

kDxk1 þ β
2

���Dx − ∇x f̂
kþ1
ξ − bk

x

���2
2
by (19)

Dkþ1
y ¼ minDy

kDyk1 þ β
2

���Dy − ∇y f̂
kþ1
ξ − bk

y

���2
2
by (19)

bkþ1
x ¼ bk

x þ
�
∇x f̂

kþ1
ξ − Dkþ1

x

�

bkþ1
y ¼ bk

y þ
�
∇y f̂

kþ1
ξ − Dkþ1

y

�

end (end of SB loop)

end (end of z -projection loop)

f̃ itþ1 ¼
�
f̂
kþ1
1 ; : : : ; f̂

kþ1
nz

�

end (end of while)
Fig. 1 fDOT noncontact parallel plate experimental setup.
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2.4 Comparison of Methods: ART Versus ART-SB

A preliminary study was made of the effect of choice of ART-SB
algorithm parameters. Both the acquired and simulated data
were reconstructed for a range of relaxation parameters, as fol-
lows: λ ¼ ð0.1; 0.2; 0.3; 0.4; 0.5; 0.6; 0.7; 0.8; 0.9; 1Þ. Then, for
each relaxation parameter value, we reconstructed the dataset
using a range of weighting parameters, as follows: μ ¼
ð0.01; 0.05; 0.1; 0.2; 0.3; 0.4; 0.5Þ.

The stop criterion for ART and ART-SB was a change lower
than 0.1% from the previous iteration in the relative solution
error norm.

Once the effect of these parameters was assessed, reconstruc-
tions of ART and ART-SB were compared.

2.4.1 Simulated data

ART and ART-SB were compared in terms of convergence, sig-
nal-to-noise ratio (SNR), and image profiles.

Convergence was assessed by visualizing the relative solu-
tion error norm compared with the number of iterations. The
relative solution error norm (with respect to the target) was cal-
culated as

ErelðfÞ ¼
kf − ftruek2
kftruek2

; (20)

where ftrue is the target solution modelled as explained in
Sec. 2.3.2.

Horizontal profiles were drawn at the center of the image. In
order to compare ART with ART-SB profiles in terms of con-
trast, both profiles were normalized by the average of highest
voxel values in the corresponding reconstructions within a
region of interest around the fluorescent target.

SNR was calculated as

SNR ¼ 20 log10
ksignalk2
knoisek2

: (21)

Fig. 2 Left: Finite element model corresponding to the simulated phantom. Right: 1 mm z-slices (y-x planes) of: (a) Target solution corresponding to the
left figure; (b) Algebraic reconstruction technique (ART) reconstruction (1% additive noise); (c) ART-Split Bregman (SB) reconstruction (1% additive
noise) with μ ¼ 0.3; (d) ART-SB reconstruction (3% additive noise) with μ ¼ 0.1; (e) ART-SB reconstruction (5% additive noise) with μ ¼ 0.1; (f) ART-SB
reconstruction of simulated data (10% additive noise) with μ ¼ 0.1. In all cases, the relaxation and denoising parameters were λ ¼ 0.9 and β ¼ 2μ,
respectively.

Fig. 3 Left: Image of the experimental phantom used. Right: 1 mm z-slices (y-x planes) of reconstructions: (a) using ART; (b) using ART-SB method with
denoising parameter β ¼ 2μ, where μ ¼ 0.5. In both ART and ART-SB, the relaxation parameter was λ ¼ 0.9.
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2.4.2 Experimental data

Only an approximate estimate of the solution target could be
provided for experimental data. In this case, ART and ART-SB
were compared in terms of SNR and image profiles.

3 Results
The z-slices of ART and ART-SB reconstructions of simulated
and experimental data are shown in Figs. 2 and 3.

3.1 ART Reconstruction

ART-based zero-noise reconstructions of simulated data within a
range of relaxation parameters [λ ¼ ð0.1; 0.2; 0.3; 0.4; 0.5;
0.6; 0.7; 0.8; 0.9; 1Þ] converged approximately to the same rela-
tive solution error norm (<0.05% maximum difference) with a
different number of iterations (from 22 to 435 iterations), thus
demonstrating that the ART is robust in terms of solution error
norm for diverse relaxation parameters.

ART, which has a low relaxation parameter, approximates a
weighted least square solution leading to over-smoothed
images. On the contrary, high relaxation parameters lead to
high-resolution images with noise and artifacts.

3.2 Two-Step Reconstruction (ART-SB)

Figure 4 shows the minimum solution error norm achieved with
ART-SB reconstructions of simulated data for different weight-
ing parameters, μ (β ¼ 2μ and λ ¼ 0.9). The relative solution
error norm achieved by ART for λ ¼ 0.9 is represented by a
horizontal dashed line.

Selection of the parameters for the ART-SB method was
based on the value of β ¼ 2μ from Ref. 19, who found that
this value resulted in good convergence. This relationship
between β and μ also provided good results in our setting.

Once β ¼ 2μwas fixed, it was found that there was a value of
μ above which the relative solution error norm stagnates (μ ≥ 2
in Fig. 4).

After splitting the problem in Eq. (17), we can see that the
choice of β affects theD and f subproblems, whereas the choice
of μ affects how much the image is regularized (f subproblem).
Besides, in the D subproblem from Eq. (17), the solution D is

Fig. 4 Relative solution error norm of reconstruction of simulated data
by ART-SB taking β ¼ 2μ and varying the weighting parameters, μ, for a
relaxation parameter λ ¼ 0.9. The dashed line indicates the relative sol-
ution norm of ARTwith. λ ¼ 0.9. Results are provided for simulated data
with 1% additive Gaussian noise.

Fig. 5 Relative solution error norm plotted against iteration number to
show the convergence of ART and ART-SB for two different relaxation
parameter values (simulated data with 1% additive Gaussian noise).

Fig. 6 Signal-to-noise ratio (SNR, dB) plotted against iteration number for ART and ART-SB with relaxation parameter. (a) Simulated data, using relax-
ation parameter λ ¼ 0.9 and denoising parameter β ¼ 2μ, (different levels of additive normal noise) and (b) experimental data, using relaxation param-
eter λ ¼ 0.9 and denoising parameter β ¼ 2μ, where μ ¼ 0.5.
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equal to ∇f þ b after shrinking its vector magnitude by 1∕β
[Eq. (19)]; this effect is more dramatic when β is small.
Thus, once β ¼ 2μ is set, lower values of μ lead to smooth
reconstructions.

We performed this study for each acquisition of data and
each λ value in order to choose optimum μ values. This increases
the robustness of the method with regards to selection of the
regularization parameter.

3.3 Comparison of Methods: ART Versus ART-SB

Given the nature of the relaxation parameters of ART, λ (see
Sec. 3.1), we compared ART with ART-SB using two high
relaxation parameter values: λ ¼ 0.9 (Erel ¼ 0.6625% for simu-
lated data) and λ ¼ 0.5 (Erel ¼ 0.6225% for simulated data).
Thus, ART was used to fit the data while SB filtered the
noise in the reconstructed image.

The faster convergence of ART-SB compared with ART can
be observed in a plot of the relative solution error norm against
iteration number for simulated data (Fig. 5).

Note that the mean CPU time for performing the SB denois-
ing for each ART iteration (Intel®-Core™ 2 Quad CPU,
2.40 GHz, 4 GB de RAM, Windows Vista) was 0.021 s.
Therefore, taking into account that we need around 120 to
160 iterations for the examples in Fig. 5, less than 4 s is neces-
sary for SB denoising.

In terms of SNR, ART-SB led to a higher SNR than ART
with both simulated and real data (Fig. 6).

The Y-profiles of ART and ART-SB reconstructions for
simulated and experimental data are shown in Fig. 7.

The profiles obtained for a simulated case with ART-SB (left
side of Fig. 7) are closer to the real ones than those obtained
with ART. Moreover, for the experimental case (right side of
Fig. 7), the peak-to-valley relation doubled (ART-SB: 19.326.
ART: 9.0427).

4 Discussion and Conclusions
In this article, we propose a novel iterative algorithm, ART-SB,
which alternates a cost-efficient reconstruction method (ART)
with a denoising step based on the minimization of TV using
SB which is also solved in a cost-efficient way. Although ART-
SB is a state-of-the-art “shrinkage methodology,”12–14,16–18 it
provides a solution for l1-regularized problems, minimizing
TV by means of the SB method introduced by Ref. 19.

In contrast to Refs. 20 and 21, we used the SB-denoising
formulation, which is solved efficiently, without computing
first and second derivatives of the TV functional. SB denoising
solved using Gauss-Seidel and shrinkage, as was the case in this
article, has a relatively small memory footprint compared with
second-order methods that require explicit representations of the
Hessian matrix.19 The authors in Ref. 19 also showed that this
way of solving SB denoising improves the speed of convergence
compared with a gradient descent algorithm based on dual for-
mulation of the ROF functional. Thus, ART-SB is a practical
method for solving large dataset problems because ART does
not need to hold the system matrix in memory and our imple-
mentation of SB denoising does not require explicit representa-
tions of the Hessian matrix.

ART-SB and ART were compared in terms of convergence,
SNR, and quality of image profiles for simulated data, and in
terms of SNR and image profiles for experimental data. The
comparison revealed that ART-SB enhanced the quality of
reconstructions with lower noise and faster convergence than
ART. Convergence of ART (Fig. 5) is fast during the first few
iterations, after which it stagnates, in agreement with Ref. 11.

ART-SB significantly improved localization and sharpened
edges. ART, on the other hand, led to blurred reconstructions
accompanied by a loss of resolution along the z (Figs. 2 and 3).
Furthermore, ART deteriorates with increased noise level.11

However, we found that ART-SB was very robust in terms of
data noise level in z-slices (Figs. 2 and 3), SNR (Fig. 6) and
Y-profiles (Fig. 7). These findings agree with the conclusions
of the two-step reconstruction algorithms for computed tomog-
raphy and positron emission tomography cited above.16–18

Although SB denoising for each z-projection of each 3-D
ART reconstruction iteration provided a significant improve-
ment in terms of localization and image quality, we did not
test whether implementation of 3-D SB denoising could lead
to even better results.

Furthermore, we stress that even if the determination of the
optimal denoising parameter (β) did not seem critical for the
study carried out in Sec. 3.2, only β has an effect on the shrink-
age operator. Thus, since the restriction is evaluated in each iter-
ation, the number of required iterations for convergence depends
on the β value (further details can be found in Ref. 19). With
β ¼ 2μ, the study of the μ parameter allowed us to understand
that there is a value of μ above which the shrinkage operator is
more effective. As we point out in Sec. 3.2, low values of β ¼ 2μ
correspond indirectly to the shrinkage operator effect [Eq. (19)],

Fig. 7 Y-profiles of central z-slice from ART-SB and ART with relaxation parameter λ ¼ 0.9. (a) Analytical target solution (solid black line) and
simulated data with different levels of additive normal noise. (b) Experimental data.

Journal of Biomedical Optics 076016-7 July 2013 • Vol. 18(7)

Chamorro-Servent et al.: Use of Split Bregman denoising for iterative reconstruction . . .



which leads to smooth reconstructions and thus increases the
number of necessary iterations before convergence is reached.
Consequently, even if the SB iteration converges to the solution
for any positive value of β, given the nature of Bregman itera-
tion,19 the value of β affects the convergence speed of the
algorithm.

In conclusion, we showed that the combination of a cost-effi-
cient linear iterative technique (ART) with a denoising method
(anisotropic SB) significantly improves the reconstruction of
fDOT-simulated data in terms of relative solution error norm
and image quality and reconstruction of fDOT experimental
data in terms of image quality. In addition, ART-SB appears
to be an efficient methodology for handling the large datasets
required for fDOT experiments and could be of interest to
researchers working with optical tomography.
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