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Abstract. Fluorescence molecular tomography (FMT) is a promising imaging technique in preclinical research,
enabling three-dimensional location of the specific tumor position for small animal imaging. However, FMT
presents a challenging inverse problem that is quite ill-posed and ill-conditioned. Thus, the reconstruction of
FMT faces various challenges in its robustness and efficiency. We present an FMT reconstruction method
based on nonmonotone spectral projected gradient pursuit (NSPGP) with l1-norm optimization. At each iteration,
a spectral gradient-projection method approximately minimizes a least-squares problem with an explicit one-
norm constraint. A nonmonotone line search strategy is utilized to get the appropriate updating direction,
which guarantees global convergence. Additionally, the Barzilai–Borwein step length is applied to build the opti-
mal step length, further improving the convergence speed of the proposed method. Several numerical simulation
studies, including multisource cases as well as comparative analyses, have been performed to evaluate the
performance of the proposed method. The results indicate that the proposed NSPGP method is able to ensure
the accuracy, robustness, and efficiency of FMT reconstruction. Furthermore, an in vivo experiment based on
a heterogeneous mouse model was conducted, and the results demonstrated that the proposed method held
the potential for practical applications of FMT. © 2014 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JBO

.19.12.126013]
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1 Introduction
Optical molecular imaging (OMI) techniques have played an
increasingly important role in revealing the dynamic interactions
of biological processes at cellular and molecular levels.1–4 As
one of the various modalities of OMI, fluorescence molecular
imaging (FMI) has received particular attention because of its
high resolution and sensitivity.5 By using an ultrasensitive
charge-coupled device (CCD) camera to detect the fluorescence
emitted by living tissues with fluorescent probes, FMI allows
researchers to monitor cell growth and localize tumors in
vivo. Recently, fluorescence molecular tomography (FMT) can
three-dimensionally detect the unknown biodistribution of
fluorescent probes inside biological tissues, thus greatly facili-
tating its applications in small animal research and preclinical
diagnostics.6–8

One of the challenging problems for FMT is the highly ill-
posed inverse problem due to the multiple scattering and poten-
tial absorption of photons propagating through heterogeneous
biological tissues.7,9 Besides, the only measurable information
for the FMT reconstruction is the two-dimensional photon dis-
tribution on the boundary of the target; this situation can be alle-
viated by using the free-space and multiprojection strategies
based on the noncontact full angle FMT imaging system to
acquire more measurement data sets.10 However, even if

sufficient measurements can be obtained, the FMT problem
may still be ill-conditioned because it is very sensitive to
noise caused by CCD measurement errors and data discretiza-
tion errors. Furthermore, high sampling measurements and real
animal-shape geometry modeling usually lead to a large weight
matrix, which results in an inherently large computational bur-
den for the FMT inverse problem. Therefore, FMT
reconstruction faces various challenges in efficiency and robust-
ness, and the development of feasible FMT reconstruction meth-
ods is important for the achievement of practical biomedical
applications.

Over the past few years, extensive work aimed at solving
the challenging FMT inverse problem has been performed.
Researchers have proposed various regularization methods to
make the solution stable and insensitive to noise. Tikhonov
regularization has been widely adopted in resolving FMT and
other optical tomographic problems.11–14 This regularization
method adds the l2-norm constraint of the solution to the origi-
nal problem, thus making the solution less sensitive to pertur-
bations. The primary benefit of using Tikhonov regularization is
that the optimization problem is simple and can be efficiently
solved by standard minimization tools, such as the Newton
method and the conjugate gradient method. However, the
Tikhonov method may result in an oversmoothed solution
and lose some localized features during reconstruction.15
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Sparsity regularization, which is widely used in the field of com-
pressed sensing (CS), has been incorporated in optical tomo-
graphic problems to promote the sparsity of the solution in
recent years.16,17 Guided by the CS theory, a sparse or compres-
sive signal can be faithfully recovered from far fewer samples or
measurements.18,19 For FMT, fluorescent signals usually have a
similar property of sparse signals based on the fact that the
domains of the fluorescent sources are small and sparse com-
pared with the entire reconstruction domain, because the size
of early-stage tumors tagged with the fluorescent probes is
small.20 The advantage of using sparsity regularization is that
it can still perform well when the measurement data sets are
very limited. In recent years, inspired by the ideas behind the
CS theory, various algorithms incorporated with l1-norm regu-
larization have been proposed to solve optical tomography
problems,21–25 such as the iterated shrinkage based method
with l1-norm (IS_L1) and the stagewise orthogonal matching
pursuit based method.

Although there are many challenging problems in FMT
reconstruction, consistent efforts are still being made to
develop more feasible reconstruction methods combined
with a priori knowledge for a more practical application. In
this paper, we demonstrated an efficient method using the non-
monotone spectral projected gradient pursuit (NSPGP) with l1-
norm optimization, while taking a priori structural information
to localize the fluorescent signals. The classical spectral pro-
jected gradient method is utilized to minimize a least-squares
problem with an explicit one-norm constraint. A nonmonotone
line search strategy is adopted to get the appropriate updating
direction, which guarantees global convergence. Moreover, the
spectral step length, which was introduced by Barzilai and
Borwein26 and analyzed by Raydan,27 is utilized to build
the optimal step length, further accelerating the convergence
process of the proposed NSPGP method. To evaluate the
performance of the proposed method, numerical simulation
studies, including multisource cases as well as comparative
analyses, have been performed. The results suggested that
the proposed NSPGP method was more accurate, efficient,
and robust for fluorescence reconstruction compared to con-
trasting methods. Furthermore, an in vivo experiment based
on a heterogeneous mouse model was conducted, and the
results demonstrated that the proposed method held the poten-
tial for practical applications of FMT.

In Sec. 2, we present the reconstruction methodology for
FMT. In Sec. 3, numerical simulation experiments of the pro-
posed method are conducted. In Sec. 4, an in vivo experiment
based on a heterogeneous mouse model further demonstrates
the reliability of the proposed method. In Sec. 5, we discuss
relative issues and conclude our work.

2 Materials and Methods

2.1 Photon Propagation Model

For photon propagation in biological tissues within the near-
infrared spectral window, scattering is the dominant phenome-
non over absorption. Therefore, the diffusion equation is usually
used to model photon transport in highly scattering media.28,29

For steady-state FMTwith point excitation sources, the forward
problem of photon propagation can be modeled as the following
coupled diffusion equations:30

(
∇·½DxðrÞ∇ΦxðrÞ�−μaxðrÞΦxðrÞ¼−Θδðr−rlÞ

∇·½DmðrÞ∇ΦmðrÞ�−μamðrÞΦmðrÞ¼−ΦxðrÞημafðrÞ
ðr∈ΩÞ;

(1)

where subscripts x and m denote the excitation and emission
wavelengths, respectively; Ω denotes the domain of the prob-
lem; Φx;m is the photon flux density for excitation (subscript
x) and emission (subscript m); μax;am is the absorption coeffi-
cient; Dx;m ¼ 1∕3½μax;am þ ð1 − gÞμsx;sm� is the diffusion coef-
ficient, where μsx;sm is the scattering coefficient and g is the
anisotropy parameter; and ημaf is the unknown fluorescent
yield to be reconstructed, which incorporates the quantum effi-
ciency η and absorption coefficient μaf of the fluorescent probe.
In the forward model, the excitation light is implemented as the
isotropic point source Θδðr − rlÞ , which is located one mean
free path of photon transport beneath the surface. Θ is the ampli-
tude of the point source and δðrÞ is the Dirac function.

To solve the coupled equations, the Robin-type boundary
conditions are implemented on the boundary ∂Ω of domain Ω:31

2Dx;mðrÞ∂Φx;mðrÞ∕∂~nðrÞ þ qΦx;mðrÞ ¼ 0 ðr ∈ ∂ΩÞ ;
(2)

where n
⇀
is the outward normal vector to the surface ∂Ω and q is

a constant, which is approximated as q ≈ ð1þ RÞ∕ð1 − RÞ. R is
a parameter governing the internal reflection at the boundary ∂Ω.

2.2 Linear Relationship Establishment

The finite element method is applied to solve the diffusion equa-
tions [Eq. (1)] together with the boundary condition [Eq. (2)].
The domain is discretized with tetrahedrons and the base func-
tions are taken as the test functions. Then the FMT problem can
be linearized and the following matrix-form equations can be
obtained:

½Kx�fΦxg ¼ fSxg; (3)

½Km�fΦmg ¼ ½D�fXg; (4)

with Dði; jÞ ¼ ∫ ΩΦxðrÞψ iðrÞψ jðrÞdr, where ΨiðrÞ and ΨjðrÞ
denote the base function of node i and node j, respectively;
Kx andKm denote the system matrix during excitation and emis-
sion, respectively; Sx denotes the excitation source distribution
after discretization; matrix F is obtained by discretizing the
unknown fluorescent yield distribution; and vector X denotes
the fluorescent yield to be reconstructed.

Photon density Φx, which is used as the energy source for
the emission process, can be obtained by solving Eq. (3).
Considering the inverse crime problem, Φx is calculated on
a fine mesh using second-order Lagrange elements. Then,
it is projected onto a coarse mesh, which will be used for
the reconstruction of X with linear elements. Considering that
Km is symmetrical and a positive definite, Eq. (4) can be trans-
formed into the following matrix-form equation:

fΦm;lg ¼ ½K−1
m;l�½Dl�fXg ¼ ½Fl�fXg: (5)

By removing the immeasurable entries in Φm;l and the cor-
responding rows in Fl, we have
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fΦmeas
m;l g ¼ ½Al�fXg: (6)

Next, Eq. (6) for different excitation locations is assembled
and the following matrix-form equation is obtained:

fΦg ¼ ½A�fXg: (7)

Hence, the procedure to solve the diffusion equations has
been simplified into the form of linear equations, which can
improve computational efficiency. It is worth mentioning that
Eq. (7) is an underdetermined system of linear equations with
fewer equations than unknowns because the surface photon den-
sity distribution is far more limited than the unknown internal
fluorescence density distribution, consequently causing difficul-
ties in the following three-dimensional (3-D) reconstruction.

2.3 Reconstruction Based on Nonmonotone
Spectral Projected Gradient Pursuit

As mentioned above, the domains of the fluorescent sources
are small and sparse compared with the entire reconstruction
domain. This can be regarded as a kind of a priori information
of the fluorescent sources. Here, l1 regularization is adopted in
the FMT problem to promote the sparsity of the solution. In this
case, Eq. (7) can be transformed into the following one-norm
regularized least-squares problem:

minimize
X

EðxÞ ¼ 1

2
kAx −Φk22 þ λkxk1; (8)

where λ is the regularization parameter for Eq. (8). Another
statement of the one-norm regularized least-squares problem
has the following form:

minimize
x

fðxÞ ¼ kAx −Φk22 subject to kxk1 ≤ τ; (9)

which has an explicit one-norm constraint and is often called the
Lasso problem.32 τ denotes the regularization parameter that is
used to govern the sparsity of the solution. fðxÞ ¼ Ax −Φ2

2

denotes the objective function.
To find the best sparse solution that stands for the fluorescent

sources, a novel method named the NSPGP method, will be
introduced in this section to solve Eq. (9). In the NSPGP
method, the classical projected gradient scheme is extended
to include a nonmonotone step length strategy based on a non-
monotone line search. The nonmonotone line search strategy is
applied to allow the overall convergence. To speed up the con-
vergence of the NSPGP method, the Barzilai–Borwein step
length (also known as the spectral step length) is adopted in
this method, which only requires a little computational work.
To the best of our knowledge, the spectral projected gradient
method has rarely been used in FMT. The main steps of the pro-
posed NSPGP method are summarized below:

To further illustrate how such a method fits into FMT
reconstruction, we mathematically derived the NSPGP method
using the following steps.

Step 1—to project iterates onto the feasible set by one-norm
projection: The NSPGP method depends on the ability to project
iterates onto the feasible set fx j x1 ≤ τg. This is accomplished
via a projection operator defined as

Algorithm 1 Nonmonotone Spectral Projected Gradient Pursuit.

Input:

Matrix A, vectorΦ, threshold parameter σ. The maximum number of
iterations Nmax

Initialization:

The initial regularization parameter τ.

The minimum and maximum step lengths 0 < αmin < αmax.

The initial step length α0 ∈ ½αmin; αmax�.

The sufficient descent parameter γ ∈ ð0; 1Þ.

The line search history length L > 1.

x0 ¼ Pτ½x �, r 0 ¼ Φ − Ax0, g0 ¼ −AT r 0.

n ¼ 1

Iteration (n ≥ 1):

(1) α ¼ αn−1

Internal Iteration:

(2) xn ¼ Pτðxn−1 − αgn−1Þ

(3) r n ¼ Φ − Axn

(4) dn ¼ xn − xn−1

(5) if kr nk22 ≤ max0≤j≤minðn−1;L−1Þkr n−1−jk22 þ γðdnÞT gn−1 then

(6) Exit internal iteration

else

(7) α ¼ α∕2

end if

End Internal Iteration

(8) gn ¼ −AT rn

(9) Δx ¼ xn − xn−1; Δg ¼ gn − gn−1

(10) αBB ¼ ðΔxTΔxÞ∕ðΔxTΔgÞ

(11) if ΔxTΔg ≤ 0 then

(12) αn ¼ αmax

Else

(13) αn ¼ minfαmin;max½αmin; αBB �g

end if

(14) n ¼ n þ 1

(15) if halting condition true (i.e., r n < σ or n > Nmax), then quit the
iteration, End if

End Iteration

Output:

(16) x ¼ xn
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PτðcÞ ¼ argmin
x

kc − xk2 subject to kxk1 ≤ τ: (10)

This projection operator gives a vector c onto the one-norm
ball with radius τ. In this step, the projection Pτð·Þ of a candidate
iterate is computed to get the newly estimated solution
xn ¼ Pτðxn−1 − αgn−1Þ of the FMT problem, where gn−1 is
the gradient [for the objective function fðxÞ ¼ Ax −Φ2

2] gener-
ated in the previous iteration. The newly estimated residual rn
and the search direction dn are then calculated.

Step 2—to obtain the step length α and to re-evaluate the
newly generated solution xn: the residual rn and the search
direction dn are found by a nonmonotone line search strategy.
The criterion used in the internal iteration results in a non-
monotone line search:

krnk22 ≤ max0≤j≤minðn−1;L−1Þkrn−1−jk22 þ γðdnÞTgn−1; (11)

which ensures that at least every LðL > 1Þ iteration yields a suf-
ficient decrease in the objective function. It is worth mentioning
that the residual rn is equal to the objective function value fðxnÞ
in the n’th iteration. γ denotes the sufficient descent parameter.
In obtaining a proper step length α, traditional line searches,
such as the Armijo line search or the Wolfe line search, require
the objective function value to decrease monotonically at every
iteration, namely:

fðxnÞ ≤ fðxn−1Þ: (12)

However, the nonmonotone line search strategy does not
require the objective function value to decrease monotonically.
Hence, it is helpful to overcome the case where the sequence of
iterates follows the bottom of a curved narrow valley, which may
occur in some difficult optimization problems.33,34 Therefore,
global convergence is ensured by the monotone line search
strategy, which forces the decrease of the objective function
at each step.

Step 3—to generate the new step length by using the
Barzilai–Borwein step length: The initial candidate iterate in
the internal iteration (steps 2 to 7) is determined by the step
length computed in steps 8 to 13. In order to compute the
new step length αn, which will be used in the next iteration,
the Barzilai–Borwein step length is adopted. The Barzilai–
Borwein step length, which was introduced by Barzilai and
Borwein and analyzed by Raydan, is defined as follows: 26,27

αBB ¼ ðΔxTΔxÞ∕ðΔxTΔgÞ; (13)

where Δx is the increment of xn between two iterations and Δg
is the gradient increment of the objective function between two
iterations. Then, the new step length used in the next iteration
can be calculated by

αn ¼ minfαmax;max½αmin; αBB�g; (14)

where αBB denotes the Barzilai–Borwein step length;
αmin ¼ 10−10 and αmax ¼ 1010 are two initial parameters. The
primary benefit of using the Barzilai–Borwein step length is
that it requires little computational work and can greatly
speed up the convergence of gradient methods.35

Step 4—to determine whether or not it is time to discontinue
the proposed NSPGP method: There are many halting
conditions for practical FMT reconstruction methods, such as

when the norm of the residual is below a certain threshold or
when the relative residual improvement between two consecu-
tive iterations is below a certain threshold, because taking more
costly iterations is not worth it if the resulting improvement is
too small. In the proposed NSPGP method, we end the iteration
when the residual rn is smaller than a certain threshold σ or the
maximum iteration number Nmax is reached. In the following
experiments, the parameters σ and Nmax were optimized accord-
ing to experimental experience. The parameter σ was set to
0.06 · normðΦÞ, where normðΦÞ is the Euclidean length of
vector Φ. In the following experiments, the reconstruction
method was able to obtain satisfactory results when using 0.06 ·
normðΦÞ as the value of parameter σ. The parameter Nmax was
set to be 1000. In our experiments, all of the reconstructions
with the proposed method stopped within 1000 iterations.

If the halting conditions are not satisfied, we set n ¼ nþ 1
and go to the next iteration. Otherwise, we output the final sol-
ution x, satisfying x ¼ xn.

The selection of a regularization parameter is still an open
active research area for FMT. To our best knowledge, there is
no efficient way to accurately select the optimal regularization
parameter for each algorithm.36 In this paper, the regularization
parameter τ for the proposed method was manually optimized
and was set to 0.8. In our experiments, it is good enough to
obtain satisfactory results when using 0.8 as the regularization
parameter.

3 Results and Discussion
In this section, both numerical simulation studies and in vivo
mouse studies have been conducted to analyze the accuracy,
efficiency, and robustness of the proposed method. All of the
reconstructions were performed on our desktop computer
with 2.39 GHz Intel Core 2 Duo CPU and 2 GB RAM.

3.1 Heterogeneous Mouse Model for Numerical
Simulation Studies

Before reconstruction, the anatomical structure of the BALB/c
mouse was developed using our micro-CT system and cone-
beam reconstruction algorithm.37,38 Several primary organs
were delineated by interactive segmentation methods to build
the heterogeneous mouse model. Since the segmented organs
are mainly in the mouse torso, this part was used for imaging
reconstructions. The 3-D view of the heterogeneous mouse
model is shown in Fig. 1(a), consisting of six kinds of materials
to represent muscle, lungs, heart, kidneys, liver and bone. The
optical parameters of different organs for both the excitation and
emission wavelength are listed in Table 1.7,39,40 Figure 1(b) is the
cross-section image of the mouse model in the z ¼ 0.02 m
plane. The black dots in Fig. 1(b) represent the excitation
light sources, which were modeled as isotropic point sources
located one mean free path beneath the surface in the
z ¼ 0.02 m plane. As mentioned above, the fluorescent sources
are usually small and sparse for FMT, so small spheres with a
diameter of 2 mm centered in the z ¼ 0.02 m plane were used to
represent the fluorescent sources. Figure 1(c) demonstrates the
setup of the mouse model for triple fluorescent sources, and the
liver region is set to be translucent so that the fluorescent sources
are not covered. The fluorescent sources S1 and S2 are in the
liver area and the fluorescent source S3 is in the muscle area,
as shown in Figs. 1(c) and 1(d). The fluorescent yields of the
sources were all set to be 0.3 mm−1. Fluorescence measurement
was implemented in the transillumination mode. For each
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excitation source, the emitted fluorescence was captured from
the opposite side of the mouse model with a 160 deg field of
view, as illustrated in Fig. 1(b). For practical FMT experiments
using a CCD camera, the shot noise always exists and will
approach a Gaussian distribution when large numbers of pho-
tons are collected. To simulate the real case, we added 5%
Gaussian noise to the measurement data.

To better evaluate the proposed method, two other classical
reconstruction algorithms were utilized to reconstruct the same
data sets. One was IS_L1, which was proposed by Han et al.23

The other was the conjugate gradient based method with the
l2-norm (CG_L2).41 All of the reconstructions were conducted
using MATLAB® on a desktop computer with 2.39 GHz Intel
Core 2 Duo CPU and 2 GB RAM.

3.2 Evaluation of Reconstruction Accuracy

In the first experiment, we reconstructed the fluorescent
sources to evaluate the reconstruction accuracy of the proposed
method. Fluorescence was excited by point sources from
12 different locations in sequence, as illustrated in Fig. 1(b).
Measurements of emission fluorescence were collected every
30 deg and a total number of 12 data sets were acquired for
the reconstruction of the fluorescent sources. Figure 2 gives
the reconstruction results from the CG_L2 method, the IS_L1
method, and the proposed method, demonstrating the 3-D
views of the reconstructed sources in the heterogeneous
mouse model and the slice images in the z ¼ 0.02 m plane.
The red circles in the slice images denote the real positions
of the fluorescent sources. From Fig. 2 we can clearly see
that the results from both the proposed method and the
IS_L1 method are satisfactory. However, the results from the
CG_L2 method were oversmoothed due to the oversmoothing
effect of the Tikhonov regularization. The sizes of the recon-
structed sources by the CG_L2 method were much larger
than the actual sizes of the fluorescent sources, and the fluores-
cence reconstructed by the CG_L2 method had a low contrast to
the background due to oversmoothing. To quantitatively analyze
the results, we define the position error (PE) as

PE ¼ kLr − Lak2; (15)

where La is the central position of the fluorescent source and Lr
is the position of the finite element node with the maximum
reconstructed value of the fluorescent yield for that source.
We also define the relative intensity error (RIE) as

RIE ¼ jIr − Iaj
Ia

; (16)

where Ia denotes the actual fluorescent yield of the fluorescent
source and Ir denotes the maximum fluorescent yield of the
corresponding reconstructed source. The quantitative compari-
sons among the reconstruction results for 12 measurement
data sets corrupted by 5% Gaussian noise are presented in
Table 2. As shown in Table 2, the PEs by the proposed method
and the IS_L1 method are the same and are smaller than those
by the CG_L2 method. The RIEs by the proposed method
are smaller than the CG_L2 method and the IS_L1 method;
that is, the fluorescence reconstructed by the proposed method
has higher contrasts compared with that of the other two
methods.

3.3 Evaluation of Reconstruction Robustness of
Limited Measurement Data

To further evaluate the reconstruction performance, robustness
testing of limited measurement data sets was conducted for the
proposed method. Usually, the tomographic imaging quality is
sensitive to limited measurement data sets. In this experiment,
we reduced the amount of the measurement data sets to simulate
a much worse case scenario. This is quite necessary when long-
term measurement is not feasible or is inappropriate. For exam-
ple, when doing small animal noninvasive imaging, long-term
measurement may cause the bleaching effect of the fluorescent
probe, which has a direct effect on the reconstruction results.
One way to resolve this problem is to reduce the number of
measurement data sets. This requires us to be able to reconstruct

Table 1 Optical parameters of the heterogeneous model.

Material μax (mm−1) μ 0
sx (mm−1) μam (mm−1) μ 0

sm (mm−1)

Muscle 0.0052 1.08 0.0068 1.03

Lungs 0.0133 1.97 0.0203 1.95

Heart 0.0083 1.01 0.0104 0.99

Liver 0.0329 0.70 0.0176 0.65

Kidneys 0.0660 2.25 0.0380 2.02

Bone 0.0024 1.75 0.0035 1.61

Fig. 1 The heterogeneous mouse model for numerical simulation
studies. (a) Three-dimensional (3-D) view of the heterogeneous
mouse model. (b) The cross-section image of the mouse model in
the z ¼ 0.02 m plane. (c) The setup of the mouse model for triple
sources. (d) The cross-section image of the mouse model with triple
fluorescent sources in the z ¼ 0.02 m plane. S1, S2, and S3 denote
the source number of the first source, the second source, and the third
source, respectively.
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the fluorescent sources with limited measurement data sets by
using an appropriate reconstruction method. Here, only the
measurement data sets generated by excitation point source
1, 5, and 9 were collected, as shown in Fig. 1(b). That is,
only three measurement data sets corrupted by 5% Gaussian
noise were used to reconstruct the fluorescent sources. The
reconstructed results by the CG_L2 method, the IS_L1 method,
and the proposed method are demonstrated in Fig. 3. The PEs of
the reconstruction results, as well as the RIEs, are summarized in
Table 3.

As shown in Fig. 3 and Table 3, when the measurement data
were very limited and multiple fluorescent sources existed, the
results reconstructed by the CG_L2 method were unacceptable.
The PEs for the reconstructed sources S1 and S2 by the CG_L2
method were 1.872 and 1.792 mm, which were much bigger
than those of the proposed method. The IS_L1 method was
able to obtain satisfactory source localizations for the fluores-
cent sources S1 and S3, but the reconstructed fluorescent source
S2 was not accurately located in the right regions. In contrast,
the proposed method was able to recover all three fluorescent

sources accurately. Furthermore, the RIEs for the proposed
method were smaller than those for the other two compared
methods, which means that the fluorescence reconstructed by
the proposed method had higher contrasts to the background
compared to the other two methods. According to the above
results, the proposed method was robust to limited measurement
data and was able to obtain satisfactory results even in a badly
ill-posed situation.

3.4 Evaluation of Reconstruction Efficiency

The high efficiency of the proposed method was also investi-
gated. The CG_L2 method and the IS_L1 method were applied
once again to reconstruct the same data sets in contrast to the
proposed method. This experiment was conducted using the
heterogeneous mouse model with three fluorescent sources,
as shown in Fig. 1. To better evaluate the time-efficiency of
the proposed method, we adopted five kinds of volumetric
meshes with varying sizes to solve the FMT problem. For all
three methods, the zero vector was used to initialize the

Fig. 2 Reconstruction results from the conjugate gradient based method with the l2-norm (CG_L2) [(a)
and (d)], the iterated shrinkage based method with l1-norm (IS_L1) [(b) and (e)], and the proposed
method [(c) and (f)] for three fluorescent sources and 12 measurement data sets: (a) to (c) The 3-D
views of the reconstruction results. (d) to (f) The slice images in the z ¼ 0.02 m plane. The red circles
in the slice images denote the real positions of the fluorescent sources.

Table 2 Quantitative comparisons between the reconstruction results from the conjugate gradient based method with the l2-norm (CG_L2), the
iterated shrinkage based method with l1-norm (IS_L1), and the proposed method for 12 measurement data sets corrupted by 5% Gaussian noise.

Source no. PE (mm) (CG_L2) PE (mm) (IS_L1) PE (mm) (NSPGP) RIE (%) (CG_L2) RIE (%) (IS_L1) RIE (%) (NSPGP)

S1 0.834 0.321 0.321 85.58 40.09 32.71

S2 0.733 0.690 0.690 85.82 25.15 12.33

S3 0.989 0.571 0.571 85.65 33.85 32.72

PE, position error; NSPGP, nonmonotone spectral projected gradient pursuit; RIE, relative intensity error.
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unknowns. Based on the different volumetric meshes, the
reconstruction efficiency of the three methods was summarized
in Table 4, which shows the time consumed by the three differ-
ent methods for reconstruction of the five groups of data sets
whose sizes were determined by the density of the discrete
volumetric mesh. Each value of the reconstruction time in
Table 4 was the average of 10 independent runs. Figure 4
demonstrates the comparison curves of reconstruction time of
different methods.

Fig. 3 Reconstruction results from the CG_L2 method [(a) and (d)], the IS_L1 method [(b) and (e)], and
the proposed method for three fluorescent sources and three measurement data sets corrupted by 5%
Gaussian noise. (a) to (c) The 3-D views of the reconstruction results. (d) to (f) The slice images in
the z ¼ 0.02 m plane. The red circles in the slice images denote the real positions of the fluorescent
sources.

Table 3 Quantitative comparisons between the reconstruction results from the CG_L2 method, the IS_L1 method, and the proposed method for
three measurement data sets corrupted by 5% Gaussian noise.

Source no. PE (mm) (CG_L2) PE (mm) (IS_L1) PE (mm) (NSPGP) RIE (%) (CG_L2) RIE (%) (IS_L1) RIE (%) (NSPGP)

S1 1.872 0.321 0.321 92.28 66.15 23.53

S2 0.733 1.907 0.690 90.68 56.57 27.54

S3 1.792 0.571 0.571 92.54 49.06 36.52

Table 4 The comparison of the reconstruction efficiency based on
different methods.

No. Volumetric mesh size CG_L2 IS_L1 NSPGP

1 2127 × 9807 57.44 s 41.69 s 4.25 s

2 2923 × 13;802 91.484 s 63.88 s 6.27 s

3 3563 × 17;058 155.784 s 92.06 s 8.33 s

4 4357 × 21;094 261.69 s 123.69 s 11.23 s

5 5220 × 25;603 436.09 s 172.55 s 14.77 s

Fig. 4 Time cost comparisons among the CG_L2 method, the IS_L1
method, and the proposed method. The reconstruction time of the
proposed method grows much more slowly than the two contrasting
methods.
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The experimental results indicated the following. (1) When
reconstructing the same data set, the IS_L1 method was more
efficient than the CG_L2 method, but was less efficient than the
proposed method. (2) When the size of the data set increased,
the proposed NSPGP method became more computationally
competitive, which is clearly depicted in Fig. 4. (3) All of
the five data sets were discretized based on the heterogeneous
mouse model with three fluorescent sources in the tissues of the

liver and muscle, indicating that the proposed method has the
potential for practical FMT applications.

3.5 Practical Application

To validate the feasibility of the proposed method in the prac-
tical application of FMT, an in vivo mouse experiment was con-
ducted. In this experiment, a nude mouse was utilized after it
was implanted with a plastic fluorescent bead in the muscle.
The fluorescent bead was filled with cy5.5 solution, which has
an extinction coefficient of ∼0.019 mm−1 μM−1 and a quantum
efficiency of 0.23 at the peak excitation wavelength of 671 nm.42

The experiment was conducted using the dual-modality optical/
micro-CT imaging system developed by our group, which was
an integrative platform that combines fluorescence imaging with
x-ray CT scanning.38,43 The schematic illustration of the dual-
modality imaging system is presented in Fig. 5, which is mainly
equipped with a 671 nm continuous wave laser with an output
power of 22 mW, along with an ultrasensitive cooled CCD cam-
era with a 13 μm × 13 μm pixel size, an x-ray generator, an x-ray
detector, a rotating stage, and a set of optical lenses.

Before optical and x-ray data acquisition, the mouse was
anesthetized and the fluorescent bead with cy5.5 solution was
implanted stereotactically into the interspaces in the vicinity of
the liver. The whole process to implement the proposed method
for FMT reconstruction is depicted by Fig. 6. The optical data

Fig. 5 The schematic illustration of the dual-modality imaging system.

Fig. 6 Method overview. (a) optical and x-ray data acquisition. (b) building the heterogeneous mouse
model. (c) reconstruction of the fluorescent distribution in the mouse model. l1-norm optimization.
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were acquired first. Fluorescent images from four views were
collected from the mouse surface. After the acquisition of the
optical data, the mouse was scanned using micro-CT to obtain
the anatomical structure, as shown in Fig. 6(a). The fluorescent
bead can be distinguished in the CT images, as shown in Fig. 7,
where the yellow square marks the location of the fluorescent
bead at the coordinates (52.83, 52.91, 13.00).

Data processing followed data acquisition. First, the mouse
structural data were reconstructed by the GPU accelerated
Feldkamp-Davis-Kress algorithm.37 Then the major organs and
tissues were segmented to build the heterogeneous mouse
model. The optical properties for the mouse organs and tissues
were calculated based on Alexandrakis et al.’s work44 as listed
in Table 5. Next, the mouse torso was discretized into a volumet-
ric mesh which contains 4667 nodes and 24,451 tetrahedral ele-
ments. The mouse torso utilized for FMT reconstruction covered

over 60% of the volume of the mouse body. Finally, in order to
portray the photon distribution on the surface of the mouse torso,
the fluorescent images were mapped onto the surface of the
volumetric mesh in the light of space and energy, as shown in
Fig. 6(b). The surface energy mapping was conducted using
a 3-D surface flux reconstruction method.45

After the above procedures, the reconstruction of the fluores-
cent distribution inside the mouse was conducted. Figure 8
shows the results reconstructed by the CG_L2 method, the
IS_L1 method, and the proposed method. The muscle region
was set to be translucent so that the reconstructed fluorescent
source was not covered. Quantitative comparisons of the results
for the above three methods are presented in Fig. 9 and Table 6.
It can be perceived that the fluorescent source reconstructed by
the CG_L2 method was widely scattered and could not be accu-
rately localized with a location error of 2.84 mm. The IS_L1

Fig. 7 Three slices of the micro-CT mouse data, where the yellow square marks the location of the
fluorescent bead: (a) the coronal view, (b) the sagittal view, and (c) the transversal view.

Table 5 Optical properties of the mouse organs and tissues.

Material Muscle (mm−1) Lungs (mm−1) Heart (mm−1) Liver (mm−1) Kidneys (mm−1) Bone (mm−1)

μax 0.0849 0.1918 0.0574 0.3437 0.0644 0.0593

μ 0
sx 0.4273 2.1720 0.9620 0.6770 2.2480 2.4900

μam 0.0563 0.1266 0.383 0.2283 0.0430 0.0393

μ 0
sm 0.3792 2.1240 0.9050 0.6480 2.1090 2.3400

Fig. 8 The isosurface 3-D views of the results reconstructed by the CG_L2 method, the IS_L1 method,
and the proposed method. (a) The reconstruction results by the CG_L2 method. (b) The reconstruction
results by the IS_L1 method. (c) The reconstruction results by the proposed method.
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method and the proposed method were both able to obtain sat-
isfactory reconstruction results with a position error of only
0.78 mm. However, the results of the proposed method were
better than those of the IS_L1 method because the fluorescent
source reconstructed by the proposed method was more concen-
trated and did not have any artifacts. Besides, the fluorescence
reconstructed by the proposed method had a higher contrast
to the background. The reconstruction time of the proposed
method was 4.14 s and was about one order of magnitude faster
than the two contrasting methods, which demonstrated the abso-
lute advantages of the proposed method in efficiency.

The above results reveal that the proposed method was able to
reconstruct the fluorescent source accurately and had the potential
to detect the lesions for practical biomedical applications.

4 Conclusion
In this paper, a novel method based on nonmonotone spectral
projected gradient pursuit with l1-norm has been proposed to
localize the internal fluorescent sources. At each iteration, a
spectral projected gradient method approximately minimizes
a least-squares problem with an explicit one-norm constraint.
A nonmonotone line search strategy is introduced to get the
appropriate updating direction. This strategy can overcome
the case where the sequence of iterates follows the bottom of
a curved narrow valley, thus guaranteeing the global conver-
gence. The Barzilai–Borwein step length is adopted to build
the optimal step length at each iteration, which requires little
computational work and can accelerate the convergence process.
In order to generate a more precise photon diffusion model for

Fig. 9 The comparisons of the reconstruction results for in vivo mouse studies. (a), (d), and
(e) Transverse views of the CT slices, where the home-made fluorescent bead can be observed in
the CT slices. (b), (c), and (f) Two-dimensional views of the reconstruction results, whose slice selections
are the same as (b), (c), and (f).

Table 6 Comparisons of the reconstruction results among different methods.

Method

Actual position
center (mm)

Reconstructed
position center (mm)

Position
error (mm)

Reconstruction
time (s)

CG_L2 (52.83, 52.91, 13.00) (51.70, 50.30, 12.98) 2.84 82.70

IS_L1 (52.83, 52.91, 13.00) (53.07, 52.24, 12.67) 0.78 49.08

Proposed (52.83, 52.91, 13.00) (53.07, 52.24, 12.67) 0.78 4.11

Journal of Biomedical Optics 126013-10 December 2014 • Vol. 19(12)

Ye et al.: Reconstruction of fluorescence molecular tomography via a nonmonotone spectral projected gradient pursuit method



fluorescent source reconstruction, structure priors have been uti-
lized to assemble a heterogeneous mouse model by extracting
the major organs and tissues of the mouse. To evaluate the per-
formance of the proposed method, three numerical simulation
experiments and one in vivo mouse experiment have been
conducted.

The experimental results suggest the following. (1) The
proposed NSPGP method is capable of guaranteeing the
reconstruction accuracy for FMT, and it is able to localize differ-
ent fluorescent sources with a position bias <1 mm. (2) It main-
tains stable fluorescent source reconstruction results even under
quite ill-posed conditions, where the measurement data sets are
quite limited. (3) Regarding the same measurement data sets,
the proposed method is more efficient compared to the classical
iterated shrinkage based method and the conjugate gradient
based method, especially for the high-dimensional problems
in fluorescent source reconstruction. (4) The potential of the
proposed method on the practical application of FMT has also
been validated further by the in vivo experiment on a nude
mouse model, in which a small fluorescent source located in
the vicinity of the liver is accurately reconstructed.

Although the proposed NSPGP method has achieved prom-
ising results, some practical applications in FMT are still very
challenging. Future work will focus on the study for more prac-
tical applications, e.g., to conduct in vivo experiments based on
probe-marked mouse models to determine if our method is able
to reconstruct the weak light signals of tumors. Additionally, the
in vivo experiment could be extended further to detect the weak
optical signals from the internal fluorescent sources at different
depths in the mouse. We believe that FMT will provide more
potential for early detection of tumors and evaluation of treat-
ment with rapid development of the reconstruction methods.
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