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Abstract. Unraveling the complexity of brain structure and function is the biggest challenge of contemporary
science. Due to their flexibility, optical techniques are the key to exploring this intricate network. However, a
single imaging technique can reveal only a small part of this machinery due to its inherent multilevel organization.
To obtain a more comprehensive view of brain functionality, complementary approaches have been combined.
For instance, brain activity was monitored simultaneously on different spatiotemporal scales with functional mag-
netic resonance imaging and calcium imaging. On the other hand, dynamic information on the structural plasticity
of neuronal networks has been contextualized in a wider framework combining two-photon and light-sheet
microscopy. Finally, synaptic features have been revealed on previously in vivo imaged samples by correlative
light-electron microscopy. Although these approaches have revealed important features of brain machinery, they
provided small bridges between specific spatiotemporal scales, lacking an omni-comprehensive view. In this
perspective, we briefly review the state of the art of correlative techniques and propose a wider methodological
framework fusing multiple levels of brain investigation. © 2015 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10

.1117/1.JBO.20.6.061105]
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1 Understanding Brain Machinery Requires
Multilevel Investigation

The brain encompasses vast numbers of interconnected neurons
that constitute anatomical and functional networks. In order to
understand how the specific wiring of neurons accounts for
brain functions, neuroscientists need various types of data.
First, they need to build three-dimensional (3-D) maps of neu-
rons within their circuits on multiple scales, ranging from inter-
hemispheric axonal connections to single synaptic contacts.
Second, the flow of electrical signals through brain circuits
needs to be computed. Third, since the circuitry undergoes con-
tinuous modifications, long-term monitoring of dynamic remod-
eling like structural reshaping and functional adaptation is
required. A vast repertoire of experimental tools is currently
available to map neuronal connectivity at multiple levels
(Fig. 1). Functional and structural maps of (animal models
and) human brain in their entirety can be obtained with low-res-
olution imaging techniques like functional magnetic resonance
imaging (fMRI), electroencephalography (EEG), diffusion mag-
netic resonance imaging, and polarized light imaging.1–7 These
methods achieve maximum spatial resolutions of hundreds of
micrometers (fMRI) and temporal precision of the order of
tens of milliseconds (EEG). These minimally invasive tech-
niques play a key role in the exploration of the human functional
and structural connectome.8,9 Moving toward finer details on
smaller samples (human brain samples or entire mouse
brain), light microscopy-based techniques like light sheet

microscopy (LSM) are well suited to obtain mesoscopic maps
of connectivity with micrometric resolution.10–12 Other tech-
niques such as the knife-edge scanning microscopy,13 micro-
optical sectioning tomography (MOST),14 fluorescence MOST
(fMOST),15 and serial two-photon tomography16 (lateral resolu-
tion ≤1 μm) can achieve similar goals with slightly better con-
trast, though they do not preserve the sample and usually require
a longer acquisition time. The subcellular resolution over the
whole mouse brain is entangled by the need for sparse fluores-
cent labeling; brainbow techniques might overcome this limita-
tion.17 Wide-field electron microscopy (EM) can achieve better
spatial resolution (10 to 100 nm) than light microscopy, but cell
types cannot be specifically labeled and the imaging process is
orders of magnitude slower, making the reconstruction of the
whole mouse brain really demanding. All of these techniques
for whole brain reconstruction work ex vivo on mammalian sam-
ples and cannot reveal functional and/or dynamic features. The
activity of microcircuits of neurons can be characterized with
cellular and subcellular resolution over spatial scales of a few
hundreds of micrometers by confocal microscopy and two-pho-
ton fluorescence microscopy (TPFM). With its unique ability to
image with high resolution and high sensitivity inside scattering
tissue,18 two-photon optical recordings combined with fluores-
cent reporters of cellular activity (e.g., calcium indicators or
voltage sensitive probes) revealed crucial features of neural
computation in vivo,19,20 in head-fixed awake animals21 and vir-
tually22 or truly23 freely moving. Longitudinal studies (temporal
scale of the order of weeks/months) of neuronal reshaping with
in vivo TPFM revealed the structural correlation of neuronal
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functional adaptivity within its dynamics perspective. The struc-
tural features of medium-sized local circuits (e.g., a cortical col-
umn or the hippocampus) can be reconstructed in their entirety
by EM-based techniques like serial block-face scanning electron
microscopy (SBSEM)24 or Automatic Tape-Collecting Lathe
UltraMicrotome (ATLUM)25 (voxel size 16 × 16 × 25 nm3),
which mechanically slice the sample. For smaller neural circuits
(up to 100 μm side) at higher resolution (near-isotropic voxels
of ∼4 nm), focussed-ion beam scanning electron microscopy26

(FIBSEM) may be the most suitable. The identification of syn-
aptic connections at the subcellular level and the molecular
properties of individual synapses can be reached quite exclu-
sively by electron microscopy and optical super-resolution tech-
niques like photo-activated localization microscopy27 and
stimulated emission depletion28 that break the diffraction barrier
(nanometer resolution).

However, despite many decades of studies, we are still far
from achieving comprehensive descriptions of brain machinery
across all those levels. Recently, multiple attempts have
addressed the multilevel complexity of this machinery by com-
bining multiple imaging techniques providing different informa-
tion. This integrated approach might overcome the intrinsic limit
of spatial and temporal resolution and can provide multiple level
information on the same sample. Here, we describe the state of
the art of correlative approaches for investigating brain structure
and functionality.

2 Correlative Imaging Overcomes the
Limitation of Single Techniques

Novel approaches may provide new ways to bridge the gap
between “postmortem” microscopic and in vivo macroscopic
worlds through functional measures reflecting neural connectiv-
ity. Several orders of magnitudes can be crossed by combining
the spatiotemporal resolution of complementary techniques.
Here, we provide four examples of correlative approaches
that linked different temporal/spatial scales, going from

noninvasive whole brain functional MRI to subsynaptic struc-
ture imaging with FIBSEM.

2.1 Simultaneous fMRI and Optical Functional
Imaging

The functional connectivity at macro- and mesoscopic scales
can be inferred with different neuroimaging techniques. fMRI
enables noninvasive monitoring of activity in healthy and dis-
eased brains with submillimeter spatial resolution in humans
and animals.2 Alterations in the blood oxygenation levels
(BOLD contrast) arising from changes in cerebral blood flow,
blood volume, and oxygenation are used to estimate brain activ-
ity.29,30 In order to understand the link between BOLD signals
(macroscale) and the underlying neural activity (mesoscale),
Helmchen et al. used a combination of BOLD fMRI and simul-
taneous recording of calcium activity31 [Fig. 2(a)]. The authors
provided a proof of principle of the integration of fluorescence
measures of brain functionality through an optical fiber with
fMRI scanners. Further, they demonstrated the close relation-
ship between the two signals by predicting BOLD signals
from the fluorescence responses measured with the optical
fiber. This study highlights the complexity of fMRI BOLD sig-
nals, involving both neuronal and glial activity. The hybrid
method for simultaneous recording of BOLD fMRI and calcium
transients imaged with TPFM could facilitate further under-
standing of cellular mechanisms of neurovascular coupling.

2.2 Correlative Light Sheet and In Vivo Two-Photon
Microscopy

TPFM is a powerful tool for longitudinal studies of brain reshap-
ing, both in terms of functional and structural plasticity. The
structural plasticity of selected neuronal populations in vivo
can be visualized by time-lapse imaging of fluorescently labeled
neuronal structures like varicosities, spines (i.e., pre- and postsy-
naptic portions), axons and dendrites.36–40 The wide-ranging

Fig. 1 Multiple spatial scales in the brain. On the top, different structures are depicted in proximity to their
typical size, showing how relevant spatial scales in the brain span several orders of magnitude. On the
bottom, typical working ranges of state-of-the-art imaging technologies.
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neuroanatomical tracing of the neuron previously observed
in vivo allows associating univocally the dynamic fingerprint
of a neuron to a specific neuronal type and to its partners of con-
nectivity. A reliable correlative reconstruction of the neuron
previously observed in vivo and of the surrounding network
can be obtained by combining TPFM with other ex vivo
imaging techniques that can explore large volumes. Unlike
other large-scale neuroanatomical techniques, ultramicroscopy,11

confocal light sheet microscopy (CLSM),10 and CLARITYopti-
mized light sheet microscopy (COLM)12 are the only ones in
which the sample is preserved without slicing, allowing multiple
imaging rounds and, therefore, providing a greater flexibility. By
using the blood vessel pattern as an internal reference, Silvestri et
al. were able to image the apical portion of a dendritic arbor in a
livingmouse usingTPFM, to find the same neuronal process after
tissue fixation, dehydration and clearing, and to trace the entire

Fig. 2 Correlative microscopy in neuroscience. (a) Experimental approach for examining the relationship
between single-cell activity and fMRI signals. Single-cell Ca2þ measured by two-photon microscopy were
correlated with bulk responses in the same region measured by one-photon fiber-optic microscopy. Then
the bulk one-photon responses were correlated with the BOLD fMRI signals. Figure modified with per-
mission from Ref. 32. (b) On the left, maximum intensity projections of several stacks TPF stitched
together in a single image. The red dashed line highlights blood vessel shadows. Red arrows highlight
characteristic features of a dendritic arbor, to help finding it back in the CLSM images. On the right, CLSM
imaging of the same neuron observed with TPF. Starting from the apical portion of the dendritic tree, the
neuron has been segmented and is shown inside a maximum-projection 3-D rendering. The scale of the
figure can be inferred from the red cube down on the right, which has 100 μm side. Figure modified with
permission from Ref. 33. (c) Functional characterization of direction-selective retinal ganglion cells
(DSGCs) and their localization within SBSEM volume. On the left, polar tuning curves for 25 DSGCs
sorted and color-coded by preferred direction. The corresponding soma locations superimposed onto
a two-photon image from the recorded region of the ganglion cell layer and the acquired SBSEM volume
(scale bars: 100 nm). On the right, skeleton reconstructions of DSGCs. DSGCs, color-coded by preferred
direction (inset), normal to the plane of the retina (scale bars: 50 μm). Figure modified with permission
from Ref. 34. (d) Correlative in vivo TPF and focused ion beam scanning electron microscopy of cortical
neurons. In vivo TPF imaging of an axon showing two stable boutons (scale bar: 5 μm). Both boutons
make multiple synaptic contacts, as visible in a single plane of the correspondent EM images, with multi-
ple dendritic spines (scale bar: 500 nm). 3-D rendering of the same axon imaged in TFP microscopy. The
cytoplasm of the axon is represented in light blue, mitochondria in green, synaptic vesicles in yellow and
synapses in red. The postsynaptic spiny neurons are shown in gray. Figure modified with permission
from Ref. 35.
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neuron from CLSM images33 [Fig. 2(b)]. The same correlative
two-photon and LSM approach could allow reconstructing the
distribution and the anatomy of neurons whose activity has
been monitored through in vivo functional imaging.

2.3 Correlative In Vivo Two-Photon Calcium
Imaging and Serial Block-Face Scanning
Electron Microscopy

Linking functional TPFM with the structural connectivity
obtained with large-scale electron microscopy allows answering
otherwise intractable neurobiological questions. For example,
though discovered 50 years ago,41 the computation of motion
direction by direction-selective retinal ganglion cells (DSGCs)
lacks a complete explanation. Though both light microscopy
and EM studies independently attempted to study direction-
selectivity circuit anatomy, the results were either contradic-
tory42,43 or incomplete.44,45 Until the recent advancement in
serial processing, EM was not capable of reconstructing large
fractions of cells in the same piece of tissue, covering the spatial
distances over which individual neurons project (hundreds of
micrometers) with the resolution of single axonal projections
(tens of nanometers). In addition, since DSGC’s preferred direc-
tion cannot be inferred from its dendritic morphology,46,47 func-
tional optical imaging techniques are needed to complement
structural reconstructions to determine these neural circuit
diagrams.

In a very accurate and in depth study, Briggman et al. com-
bined in vivo calcium imaging in the intact retina and SBSEM-
based reconstruction of the circuitry in the same piece of tissue
to explain the behavior of retinal ganglion cells (DSGCs)34

[Fig. 2(c)]. They show that dendrites of mouse starburst ama-
crine cells make highly specific synapses with direction-
selective ganglion cells depending on the ganglion cell’s pre-
ferred direction. This pattern provides the structural substrate
for the functional asymmetry in the inhibitory input currents
observed in DSGCs. This study directly correlated a structural
(wiring) asymmetry with the functional properties of the
cell, i.e., to the computation of direction selectivity. Accurate
3-D maps of connectivity between neurons will be essential for
the implementation of the algorithms used in neural computa-
tions, such as the detection of directed motion by the retina.

2.4 Correlative In Vivo Two-Photon Imaging of
Structural Plasticity and Focused-Ion Beam
Electron Microscopy

The synaptic connections between axons and dendrites can quite
exclusively be visualized with EM. When combining high-
resolution EM with in vivo light microscopy, the time lapse
structural remodeling can be linked with the underlying ultra-
structural morphology.48,49 In vivo-imaged dendrites and
axons in adult mouse brains can subsequently be prepared
and imaged with EM. The growth of dendritic spines in the
adult mammalian brain, seen with two-photon in vivo micros-
copy, has been verified as new synaptic connections by using
post hoc serial section transmission electron microscopy
(TEM).50,51 The advent of FIBSEM greatly increased the
level of automation, reliability, and speed of EM imaging.26

One of the most commonly used tricks to retrieve the position
of the in vivo imaged structure is to burn fiducial marks with the
pulsed laser next to it in the fixed tissue.52,53 Since this combi-
nation of techniques avoids the use of specific labels to identify

the structures of interest in the electron microscope, optimal
structural preservation for 3-D analysis is guaranteed [Fig. 2
(d)]. In the last years, several studies provided proof of evidence
of the added value of correlating in vivo TPFM and FIBSEM for
targeting micro- and ultrastructural features of synaptic plastic-
ity.35,54,55 Recently, two parallel works by Allegra Mascaro et
al.56 and Canty et al.57 combined two-photon in vivo imaging
with FIBSEM to study how laser axotomized and regenerated
axonal branches interact with the surrounding neuropil and pos-
sible postsynaptic targets. These EM reconstructions allowed
visualizing both the distribution of mitochondria and synaptic
vesicles inside the axon and inferring the structural interplay
between the axon and the dendrite.

3 Wider Methodological Frameworks Fusing
Multiple Levels of Investigation might
Boost Our Understanding of the Brain

The correlative methods presented in the previous section
showed fundamental insight into different spatiotemporal scales
of brain functioning. The small though solid bridge they
provided between different types of data can be promisingly
expanded toward a unified approach covering most perspec-
tives. In detail, in vivo imaging by noninvasive human-targeted
techniques like fMRI could be the starting point of a long pipe-
line that interrogates the long-term plasticity of small popula-
tions of neurons through in vivo TPFM functional and structural
imaging. Actually, this translational step is the most critical and
less explored, probably because fMRI remains a clinically
oriented technique while TPFM is a basic science research
tool. Nonetheless, understanding the cellular activation patterns
underlying fMRI signals would be beneficial for diagnostic pur-
poses, and it would boost the translational potential of light
microscopy. Several studies on neurovascular coupling58–61

are now helping to fill this gap, and hopefully new correlative
investigations combining simultaneous one- or two-photon fluo-
rescence microendoscopy (e.g., Jung et al.)62 and MRI will
come. Once functional and structural data are obtained in
vivo at the small-circuitry level, the same sample shall be proc-
essed with LSM or analogous techniques for ex vivo long-range
anatomical analysis. This contextualization into a wider frame-
work is refined up to the synaptic scale when imaged through
electron microscopy and/or super-resolution techniques. The
need for sample processing procedures (e.g., clearing methods)
compatible for all the techniques along the pipeline is one of the
main limiting factor. In this view, the CLARITY technique,
developed in Deisseroth’s lab to drastically reduce tissue scat-
tering and perform optical imaging and immunolabeling
through entire intact brains, preserves ultrastructural features
and is thus EM compatible.63 Anyway, different degrees of tis-
sue deformation throughout the pipeline are unavoidable and
have to be considered when building multilevel maps of the
brain. Informatics tools to align data at different scales within
a common framework (i.e., stereotaxic atlases of murine and
human brain) and big data storage facilities need to be further
implemented and routinely used. Big transnational research
partnerships like the Human Brain Project are working in this
direction by “developing the integration and algorithmic recon-
struction processes required for high fidelity reconstruction of
the mouse brain across all levels of biological organization,
from genes to cognition.”64 Since a completely integrated cor-
relative approach implies that the same animal should be studied
by multilevel analysis on several devices, the possibility of
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having this wide set of tools near to each other, e.g., in the same
campus, is not a negligible issue. Multidisciplinary facilities
provided with the above-described imaging devices are essential
requirements for setting up this working strategy. In addition,
considering the intrinsic difference between individuals (even
between mice of the same strain), a multilevel investigation
of the same sample would be extremely beneficial to reduce sta-
tistic variability and to cut the number of animals used in the
experiments.

We will try now to speculate on the information that can be
gained on a neurological disease like stroke by following this
pipeline. Stroke alters and triggers changes in intra- and inter-
hemispheric connectivity; this rewiring aims at compensating
for the loss of function.65 fMRI on (human and) mouse brain
affected by stroke can tell the progression of the pathology over
time, showing the plastic remapping of distant regions over the
whole brain.66 MRI does not have enough resolution to infer
what the cellular trigger of this remodeling is; simultaneously
performed TPF imaging of labeled neuronal cells could reveal
the structural and functional rewiring underlying fMRI signals
in the newly activated cortical area of the same mouse with sub-
cellular detail.67 Optical imaging on stroke animal models is
capable of providing fundamental insight into dendritic remod-
eling, axonal rewiring, and spine plasticity67–69 while accurately
depicting the functional remapping of the damaged cortex,70,71

and revealing angiogenesis and hemodynamic adaptation over
time.72–74 Alterations in long-range projections underlying
inter-hemispheric plasticity can be studied ex vivo on the same
brain once cleared. Moreover, stroke-induced expression of sev-
eral molecules and proteins, like growth-associated factors and
inflammatory chemokines, can be addressed with multiround
immunohistochemistry over the entire clarified brain by LSM
or similar techniques. Once having the big picture in terms of
long-term dynamics and wide-range remodeling, fine details
like the presence of synaptic contacts on regenerated axons are
available by electron microscopy on targeted regions of the same
sample.

In our opinion, this multidimensional hybrid strategy could
be extremely useful in the investigation of complex brain dis-
eases and would speed up the translation of neurobiology stud-
ies to clinical settings. Moreover, the setup of pharmacological
treatments would crucially benefit from this multilevel investi-
gation given the multitude of information that can be gained
at once. We believe this kind of cross-disciplines multiscale
studies is the missing tile to boost our knowledge of the
brain.
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