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Abstract. Photoacoustic computed tomography (PACT) and ultrasound computed tomography (USCT) are
emerging modalities for breast imaging. As in all emerging imaging technologies, computer-simulation studies
play a critically important role in developing and optimizing the designs of hardware and image reconstruction
methods for PACT and USCT. Using computer-simulations, the parameters of an imaging system can be sys-
tematically and comprehensively explored in a way that is generally not possible through experimentation. When
conducting such studies, numerical phantoms are employed to represent the physical properties of the patient or
object to-be-imaged that influence the measured image data. It is highly desirable to utilize numerical phantoms
that are realistic, especially when task-based measures of image quality are to be utilized to guide system
design. However, most reported computer-simulation studies of PACT and USCT breast imaging employ simple
numerical phantoms that oversimplify the complex anatomical structures in the human female breast. We
develop and implement a methodology for generating anatomically realistic numerical breast phantoms from
clinical contrast-enhanced magnetic resonance imaging data. The phantoms will depict vascular structures
and the volumetric distribution of different tissue types in the breast. By assigning optical and acoustic param-
eters to different tissue structures, both optical and acoustic breast phantoms will be established for use in PACT
and USCT studies. © 2017 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JBO.22.4.041015]
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1 Introduction
Photoacoustic computed tomography (PACT)1–3 and ultrasound
computed tomography (USCT)4–6 are emerging modalities for
breast imaging. PACT employs ultrasonic detection principles
and a contrast mechanism based on optical absorption, thereby
combining the rich contrast of optical imaging methods with
the deep penetration and high spatial resolution of ultrasound
imaging methods. The hybrid nature of PACT breast imaging
provides both structural information and hemoglobin-related
functional information within the breast, which can aid clinical
diagnosis. USCT employs various acoustic tissue contrasts,
including acoustic reflectivity, acoustic attenuation, and speed
of sound, to characterize malignant tissues within the breast.
Both PACT and USCT are radiation-free, breast-compression-
free, and relatively inexpensive. In addition, the integration of
PACT and USCT has drawn increasing attention7–11 because
they provide complementary contrasts, the speed of sound infor-
mation produced by USCT can improve the accuracy of PACT
image reconstruction, and the two imaging modalities can share
a common ultrasonic detection system. These advantages make
PACT and USCT promising tools for breast cancer screening.

Developing an effective PACT or USCT breast imaging sys-
tem requires carefully balancing various design constraints.
Computer-simulation studies are often conducted to facilitate

this task. Furthermore, the development and optimization of
advanced reconstruction algorithms also require simulation
studies. To date, numerical phantoms employed in many PACT
and USCT simulation studies are either two-dimensional
(2-D)12,13 or three-dimensional (3-D) volumes comprised of
only simple objects.12,14–17 These oversimplified phantoms do
not reflect the complex anatomical structures within the breast,
thus limiting the value of simulation studies in guiding real-
world system design and algorithm development. This is
particularly true when task-based image quality measures are
employed.18 While some recent works in quantitative PAT
have employed realistic numerical phantoms derived from
μCT rat and mouse brain images,19,20 those phantoms were uti-
lized for small animal imaging and therefore provided limited
guidance for clinical system designs. As such, there remains
a need for the development of anatomically realistic numerical
breast phantoms suitable for clinical purposes to advance PACT
and USCT technologies.

However, the creation of accurate numerical breast phantoms
for PACT and USCT is challenging due to the intertwined net-
works of vessel, fat, and fibroglandular tissue within the breast.
Generation of numerical breast phantoms has been previously
addressed by Zastrow et al.21 for microwave imaging and by
Deng et al.22 for optical imaging. However, with hemoglobin
being the key optical contrast of PACT, the development of
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useful PACT phantoms requires accurate modeling of vessel
structures, which were not considered in the aforementioned
work. Other groups, including Nie et al.,23 Chen et al.,24 and
Wang et al.,25 have developed methods for segmenting different
breast tissues from MRI images. Although their segmentation
methods could potentially be utilized to establish PACT phan-
toms, the vessel structures were not considered in their works
either. Marcan et al.26 successfully segmented hepatic vessels
from MR images in the liver, but due to the inherently different
anatomies of breast and liver, their method cannot be directly
employed to establish breast phantoms.

In this work, we report the development of realistic 3-D
numerical breast phantoms for PACT and USCT that describe
the optical and acoustic properties of the breast. Clinical con-
trast-enhanced magnetic resonance (MR) data are employed
to establish the numerical phantoms. Methods for segmenting
skin, vessels, fat tissue, and fibroglandular tissue are developed
and applied to the clinical data. Finally, coregistered optical and
acoustic phantoms are generated from the segmented tissue
types. Furthermore, to promote reproducibility in PACT and
USCT research, the phantoms have been made publicly avail-
able online.27 The generated phantoms can be readily employed
in PACT and USCT simulations.

The remainder of the paper is organized as follows. An over-
view of the methodology for generating optical and acoustic
phantoms from MR datasets is presented in Sec. 2. A compre-
hensive description of the methodology with implementation
details is given in Sec. 3, and examples of generated numerical
phantoms are presented in Sec. 4. A PACT simulation study
utilizing the generated phantoms is given in Sec. 5. Finally,
a summary of the work is provided in Sec. 6.

2 Overview of Methodology

2.1 Overall Scheme

The goal of this work is to develop a computational framework
for generating realistic 3-D optical and acoustic breast phantoms
from clinical MR data. The general work flow is shown in Fig. 1.
To extract vessel structures, contrast-enhanced MR (CE-MR)
data are utilized. In CE-MR images, an injected contrast agent
results in an increased intensity at vessel locations in the post-
contrast images compared to the precontrast images. The input
MR data are processed by a four-step procedure to segment
different tissues within the breast, which include blood vessels,
skin layer, fat, and fibroglandular tissues. By assigning corre-
sponding optical and acoustic property values to each seg-
mented tissue type, a collection of numerical phantoms are
created as the final output. An overview of the computational
framework is described in the following sections, and a detailed
description of the method and its numerical implementation are
presented in Sec. 3.

2.2 Clinical Data Collection

Magnetic resonance imaging (MRI) is one of the standard
screening tools for breast imaging.28,29 Skin, fat, and fibrogland-
ular tissues can be well characterized within the breast according
to their intensities in MR images. Furthermore, with the aid of
contrast agents, blood vessels can also be identified in CE-MR
images. MRI retains the natural shape of the breast correspond-
ing to a patient lying in a prone position and provides sufficient
resolution for our purpose. Because of these features, the

Fig. 1 Flow chart of the key steps in the breast phantom generation process.
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numerical phantoms in our study are based on a database of
contrast-enhanced, fat-suppressed MR breast images.

2.3 Step 1: Preprocessing

Each dataset is first interpolated onto a finer 3-D grid to reduce
voxelization in the appearance of the MRI images. Left and right
breasts are then separated into individual volumes from the
centerline and are treated as independent phantoms. A raw con-
tour of the breast is extracted from the interpolated precontrast
MR data to separate the breast volume from the background.
Finally, the chest wall area is excluded from the breast
volume.

2.4 Step 2: Vessel Extraction

The second step of the computational framework involves
extracting vessel structures from contrast-enhanced MR data.
Hemoglobin is the major optical absorber within human tissue
in the visible and NIR spectral ranges. The absorbed energy
distribution of blood provides key information for imaging tech-
niques that utilize optical absorption contrast, such as PACT.
A newly generated vessel nest may reveal angiogenesis.30

Also, strong signals from major vessels can hinder the detection
of weak signals from a nearby structure of interest. Therefore,
incorporating anatomically realistic vessel information is crucial
for optical phantoms to accurately simulate clinical experiments.

A vessel-enhanced MR image is first computed by averaging
three postcontrast MR datasets taken at different time points
after injection of the contrast agent and subtracting precontrast
data from the averaged data. A Frangi vesselness filter is then
applied to the raw vessel-enhanced data.31,32 The Frangi filter
exploits the local Hessian characteristics of different 3-D geo-
metrical surfaces and selectively enhances tube-like structures
across multiple tube radii. Hence, the vessel-like structures in
the data are enhanced. To segment the data processed by the
Frangi filter, an intensity threshold is chosen by analyzing the
histogram. This threshold is then applied to binarize the data. By
examining all major connected components in the binarized data
and manually choosing the ones whose visual appearance re-
present vessel structures, we can eliminate nonvessel structures
with minimal human interactions. The chosen connected com-
ponents representing vessels are then morphologically proc-
essed to smooth unnatural boundaries and are combined to
form a 3-D binary vessel volume.26

2.5 Step 3: Skin Extraction

The skin layer defines the breast-air boundary, which plays a
vital role in both photon propagation and acoustic wave propa-
gation. To extract the skin layer from fat-suppressed precontrast
MR data, the fact that the skin layer has a higher intensity than
both the background outside of the breast and the interior adja-
cent breast tissue (normally fat) is exploited. Meanwhile, since
some superficial vessel structures also possess high intensities,
the extracted vessels from step 2 are utilized as supplementary
information to facilitate the skin extraction procedure to avoid
categorizing these vessels as part of the skin layer. First, an
approximated skin area is retrieved by finding the outer breast
contour using an empirically set intensity threshold for the skin.
This approximated skin area contains most of the skin but also
other tissues and part of the background. A more accurate skin
intensity threshold and a skin thickness range are then estimated

by analyzing the histogram within the approximated skin area.
Finally, an accurate skin layer is extracted by applying the more
accurate skin intensity, and skin thickness at different parts of
the breast is adaptively determined to reflect the true thickness in
the MR images. Vessel structures located near the breast surface
are also avoided.

2.6 Step 4: Fat and Fibroglandular Tissue
Extraction

Acoustic heterogeneity in the breast, including the speed of
sound and tissue density, plays a crucial role in acoustic
wave propagation. The fourth step in our framework describes
the segmentation of fat and fibroglandular tissues within the
breast. In fat-suppressed MR data, fibroglandular tissues have
a higher intensity than fat. Based on this fact, a fuzzy C-
means algorithm is applied to the breast volume (with skin
layer excluded) to separate fibroglandular tissue from fat.23

Morphological processing is applied to the binary fibroglandular
tissue volume to remove unnatural structures. Finally, the binary
fat volume is generated by taking the complement of the fibro-
glandular tissue volume with respect to the breast volume.

2.7 Step 5: Optical and Acoustic Phantom
Generation

Using the methods described above, the breast volume can be
segmented into different classes representing vessel, skin, fat,
and fibroglandular tissues. A segmented-tissue phantom is cre-
ated by assigning each voxel to one of these four tissue types
according to the segmentation results. The optical absorption
phantom, optical scattering phantom, refractive index phantom,
and scattering anisotropy phantom are generated by assigning
corresponding property values to each tissue type based on
the segmented tissue phantom. Acoustic phantoms, including
the speed of sound and density phantoms, are generated
accordingly.

3 Detailed Description of Methodology and
Implementation

The content in Sec. 2 addressed the salient aspects of the pro-
posed methodology for generating optical and acoustic breast
phantoms. In this section, a more detailed description of the
methodology along with implementation details is presented.
The following notations are employed: the X, Y, Z directions
within the breast volume correspond to the medial-lateral,
superior-inferior, and anterior-posterior anatomical directions,
respectively; the variables starting with V indicate 3-D volumes
with grayscale intensity values, and the variables starting with B
indicate 3-D volumes with binary values (0 and 1).

3.1 Description of MRI Data

A total of 50 contrast-enhanced and fat-suppressed MR datasets
were collected from Barnes Jewish Hospital with the approval of
the Institutional Review Board. Both precontrast and postcon-
trast data were acquired using a Siemens 1.5T Espree MRI sys-
tem, employing a Flash 3-D sequence with a repetition time of
6.06 ms and an echo time of 2.71 to 2.85 ms. Each dataset was
comprised of a series of transaxial slices with an in-plane pixel-
size of 0.6 mm × 0.6 mm and a slice spacing of 1.0 mm. After
a precontrast MR scan was performed, 13 mL of MultiHance
contrast agent was injected, and three sequential postcontrast
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MR scans were performed at different time-points after
injection.

3.2 Preprocessing Implementation

The MRI data were preprocessed as follows:

1. Both precontrast and postcontrast MR data were inter-
polated onto a uniform 3-D grid with a voxel size of
0.2 × 0.2 × 0.2 mm3 using cubic interpolation.

2. The left and right breasts were separated from the
centerline into two individual volumes and were
used to create two distinct phantoms.

3. A raw binary volume of the breast contour, BRcontour,
was extracted from the interpolated precontrast MR
data. The technique to retrieve the contour is referred
to as 3-D pooling.21 This 3-D pooling method created
three logical masks along three directions: X, Y, and Z.
In each one-dimensional “1-D” column within the
breast data, the first and last voxels whose intensities
exceed a specified threshold were found, and the vox-
els between these first and last voxels were set to 1 in
the corresponding logical mask. Three logical masks
were combined into the raw breast contour volume
using the logical and operation. A value of 1 for a
given voxel in BRcontour indicates the breast, while a
value of 0 indicates space outside the breast. An illus-
tration of the pooling method is shown in Fig. 2.

4. The original MR data include both breast and a large
portion of the chest wall area. Separation of the breast
from the chest wall area is accomplished by traversing
through the X-Y (coronal) slices of BRcontour and com-
puting the perimeter of the contour’s coronal slices.
The perimeter in general follows an increasing trend
from nipple to chest wall. Therefore, when the perim-
eter exceeds a specified threshold, the breast volume is
cut at this slice: all slices before were considered to
contain part of the breast, while all slices beyond
were considered to contain part of the chest wall.
The chest wall area was then cropped out from both
the interpolated breast data and BRcontour.

This procedure produced interpolated-and-cropped precon-
trast and postcontrast MR data, which were denoted by Vpre

and Vpost, along with a cropped binary raw contour volume
denoted by BRcontour.

3.3 Vessel Extraction Implementation

The vessels were extracted according to the following steps:

1. Three postcontrast datasets taken at different time-
points after injection were first averaged to give Vpost.
A raw vessel-enhanced dataset was then obtained by
VRenhanced ¼ Vpost − Vpre.

2. A Frangi vesselness filter was applied to VRenhanced,
31,32

and the output was further smoothed by a narrow 3-D
Gaussian kernel. The smooth filtered data was denoted
by VFrangi.

3. Because the Frangi vesselness filter enhances but
does not segment vessel-like structures, further post-
processing is necessary to separate vessels from
other structures. A threshold was chosen at 70% to
90% of the cumulative histogram of VFrangi and was
applied to VFrangi to create a binary vessel volume
BFrangi.

4. Connected component analysis was applied to BFrangi

to extract major vessel structures while excluding
other nonvessel tube structures.26 Each connected
component with a voxel-count larger than a preset
threshold was displayed on the screen, and some min-
imal human interaction (5 to 10 yes/no choices) were
required to determine whether the connected compo-
nent represented a vessel structure or not. Each chosen
connected component was subject to a 3-D region-
growing operation to fill gaps33 and a thinning oper-
ation to better reflect the true vessel thickness.

5. The binary vessel volume after step 4 was then
“smoothed” according to the following steps:

a. Three maximum intensity projection (MIP) images
of the binary vessel volume were computed across
all three directions, X, Y, and Z, and were denoted
by IX, IY , and IZ, respectively.

b. The region boundaries within each MIP image
were extracted using the Moore-Neighbor tracing
algorithm modified by Jacob’s stopping criteria
(MATLAB’s bwboundaries function).34 The boun-
daries were essentially collections of 2-D pixels.
The X and Y coordinates of each collection of pix-
els were taken to form two vectors. Both vectors
were then smoothed by a 1-D Gaussian kernel
and recombined into X-Y coordinates of pixels
to create “smoothed” boundaries. The interior of
the “smoothed” boundaries was then filled to
form “smoothed” 2-D MIP images, denoted by
IsmoothX, IsmoothY , and IsmoothZ.

c. A new “smooth” 3-D binary vessel volume Bsmooth

was created from BFrangi, IsmoothX, IsmoothY , and
IsmoothZ, employing the following rules: A voxel
in BFrangi was changed from 1 to 0 if the corre-
sponding projected pixel in IsmoothX was 0 and
performing such an operation did not change the
corresponding pixels in IY and IZ. Similar proc-
esses were repeated for IsmoothY and IsmoothZ.
A voxel in BFrangi was changed from 0 to 1 if the

(a) (b)

Fig. 2 (a) Illustration of the pooling method on a precontrast MR
dataset. (b) The extracted raw contour volume.
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corresponding projected pixel in IsmoothX was 1 and
it had at least two nonzero neighboring voxels in
BFrangi. Similar processes were repeated for IsmoothY

and IsmoothZ.

6. The “smooth” 3-D binary vessel volume was closed
using a small solid sphere to remove small holes and
sharp corners. Small isolated structures were removed
as well.

This procedure produced a binary vessel volume Bvessel.

3.4 Skin Extraction Implementation

The skin layer was extracted according to the following steps
illustrated in Fig. 3:

1. A low-level grayscale threshold T0 and an initial guess
of the maximum skin thickness Rinit were empirically
chosen. The value of T0 was set at 20% of the maxi-
mum intensity in Vpre, and Rinit was set to 3.0 mm,
which slightly exceeds the normally accepted skin
thickness of 2.0 to 2.5 mm.35

2. The raw contour BRcontour was first applied to the inter-
polated precontrast data Vpre to exclude the back-
ground. For each column within the generated 3-D
volume, the first voxel that was larger than T0 was
found and denoted by A. A sphere centered at A with
a radius of Rinit was then identified [dotted circle in
Fig. 3(a)], and the hemisphere inside the breast was
chosen by computing the local gradient at A. The
hemisphere [indicated by the red mask in Fig. 3(a)]
represented a raw estimation of the skin area. This
process was repeated for every voxel “column” in
five directions, �X, �Y, þZ, and all such red hemi-
spheres were combined to form a raw skin area,
AreaRS.

3. AreaRS included both the high-contrast true skin layer
and some low-contrast voxels representing either
background or fat. According to the cumulative

histogram of voxel intensities within AreaRS, a thresh-
old TS was chosen at 30% to 50% of the maximum
value of the cumulative histogram to represent an esti-
mated skin intensity threshold. We chose the center
X-Z slice of AreaRS to estimate an average skin thick-
ness. Within this slice, the estimated TS was applied to
estimate the total area of the skin within this slice, and
2-D thinning was applied to estimate the “length” of
the skin. By dividing skin area by skin “length,” we
get an estimated skin thickness Ravg. This quantity
represents an average skin thickness. However, the
thickness at different parts of the breast may vary.
Therefore, we define a skin thickness range to be
½Rmin; Rmax� ¼ ½Ravg − ΔR; Ravg þ ΔR�, where ΔR is
an empirically chosen parameter reflecting the degree
of skin thickness variability for a particular patient.

4. Step 2 was repeated, but this time, the estimated skin
threshold TS was used. For a particular voxel “col-
umn,” the first voxel larger than TS was denoted by
B. The radius of the sphere, Rskin, was determined by
the following procedure:

a. A sphere centered at B with a radius of Rmax was
identified [the dotted circle labeled with Rmax in
Fig. 3(b)].

b. The hemisphere inside the breast was chosen by
computing the local gradient at B. This hemisphere
provides an overestimation of the thickness of the
skin layer. Therefore, this hemisphere contains
a spherical cap in which the skin is not present.
In Fig. 3(b), the blue-line-enclosed area indicates
the region of the hemisphere where the skin
layer is located. The volume of the skin layer
within the hemisphere can be approximated by
counting the number of voxels with intensities
greater than TS. With knowledge of the volume
and the radius of the sphere Rmax, the height of
this skin region can be analytically computed.
This height h served as the estimated skin thickness
Rskin.

Fig. 3 Illustration of skin extraction procedure. (a) Extraction of the raw skin area AreaRS, where the white
arrow is an example of a voxel “column,” A is the first voxel larger than T 0 in this “column,” and the red
mask forms AreaRS. (b) Extraction of the final skin layer, where the dotted circles indicate a sphere with
radius Rmax, the blue line encloses the true skin region, and the yellow circle represents the adaptively
chosen skin thickness Rskin. The green masks form Bskin. (c) Illustration of skin extraction that avoids
superficial vessel structures.
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c. The estimated skin thickness Rskin was projected
onto the range ½Rmin; Rmax�.

d. This quantity Rskin was further reduced so that
the skin region did not overlap with the extracted
vessel structures in Bvessel [see Fig. 3(c)].

The new hemispheres determined by TS and Rskin are indi-
cated by the green areas in Figs. 3(b) and 3(c), respectively.
All such green hemispheres from every voxel “column” were
combined to form the final binary skin volume Bskin. The
volume inside the skin mask representing the interior of the
breast was denoted by Binterior.

This procedure produced a binary skin volume Bskin and
a binary breast-interior volume Binterior.

3.5 Fat/Fibroglandular Tissue Extraction
Implementation

The fat and fibroglandular tissues within the breast were seg-
mented according to the following steps:

1. First, the breast interior mask Binterior was applied to
the precontrast data Vpre to obtain the interior volume
of the breast Vinterior. Extracted vessels from step 2
were also excluded.

2. A fuzzy C-means clustering method36 was applied to
Vinterior to separate fat tissue from fibroglandular
tissue.23 The voxels in Vinterior were clustered into
six clusters according to their intensities. The clusters
whose centers had intensities larger than a preset
threshold (30% of the maximum intensity) were clas-
sified as fibroglandular tissue. Note that the cluster
number and threshold value may need to be adjusted
according to different datasets.

3. The extracted binary fibroglandular volume was then
closed with a small solid sphere to remove holes and
sharp corners and filtered with a median filter to
smooth the structures. Isolated small structures were
removed as well. The binary fat volume was created
by subtracting the binary fibroglandular volume from
the interior mask Binterior.

This procedure created a binary fat volume Bfat and a binary
fibroglandular volume Bfibro.

4 Results
In this section, examples of numerical breast phantoms
produced using the proposed methodology are presented.
Specifically, three numerical phantoms were created from
three patients’ MR data. Each example represents a different
BI-RADS breast density level: scattered fibroglandular level
(patient 1), heterogeneously dense level (patient 2), and
extremely dense level (patient 3). The extracted binary volumes
of blood vessels, skin, fat, and fibroglandular tissue for each
case are shown in Figs. 4–6, respectively. The generated seg-
mented-tissue phantoms along with their 3-D rendered views
are shown in Figs. 7–9. Because the optical and acoustic phan-
toms all have the same structures and visual appearances as their
corresponding segmented-tissue phantoms, differing only in
their units and absolute values, these phantoms are not displayed
here.

Figures 4–6 show intermediate outputs obtained following
the first four steps in our methodology. Each figure depicts
the outputs for one patient. The columns in Figs. 4–6 show,
from left to right, either example slices of X-Y, X-Z, and
Y-Z planes or MIP images along the Z, Y, and X directions,
respectively. The rows in Figs. 4–6 show outputs at different
stages of the breast phantom generation process. The first
row shows slices of the precontrast MR data Vpre, obtained fol-
lowing the preprocessing step (step 1). The second row shows
MIP images of the vessel-enhanced MR data VRenhanced, which
represents the difference between the averaged postcontrast MR
data and the precontrast MR data. The third row shows MIP
images of the extracted binary vessel volume Bvessel. The second
and third rows are both obtained as part of the vessel extraction
step (step 2). The fourth row shows slices of the extracted binary
skin volume Bskin, which is the output at the end of the skin
extraction step (step 3). Finally, the fifth row shows slices indi-
cating the segmentation of fat and fibroglandular tissues,
obtained following the fat/fibroglandular extraction step (step
4). For ease of visualization, the binary volumes generated by
this step, Bfat and Bfibro, along with the vessel volume Bvessel

from step 2, are combined into a single grayscale volume.
The vessels are shown in white, the fibroglandular tissue is
shown in light gray, and the fatty tissue is shown in dark
gray. Comparison with the original MR data shows that the pro-
posed method accurately extracts different tissue types for
breasts with various density types.

Figures 7–9 show the results of the fifth step in our method-
ology. As mentioned above, for sake of brevity, the segmented-
tissue phantoms are shown in lieu of the optical and acoustic
phantoms themselves. The first three columns in each figure
show the same example X-Y, X-Z, and Y-Z slices as in
Figs. 4–6. The final column shows a 3-D rendered view of
the segmented-tissue phantom. For the tissue types in the
first three columns, vessels are shown in red, skin in gray, fat
in yellow, and fibroglandular in light blue. The colors in the
3-D rendered views for all the tissues are the same except
that fibroglandular is now shown in light pink. The generated
segmented-tissue phantoms display close representations of
the realistic anatomical structures of the breast indicated in
the original MR data.

5 PACT Simulation Employing the Generated
Phantoms

A PACT computer-simulation study employing one of the
numerical breast phantoms was performed to demonstrate
the usefulness of the phantoms in comparing different image
reconstruction methods.

The phantom generated from patient 1 was chosen for the
study. The assigned optical and acoustic properties for the phan-
tom are given in Table 1. These values were chosen from the
literature.37,38 The optical properties were chosen for a wave-
length of 760 nm. While the 3-D phantom permits both the opti-
cal and acoustic simulations to be performed in 3-D, a 2-D
acoustic simulation was employed for expediency. The mea-
sured data recorded by a collection of ultrasonic transducers
arranged on a 2-D ring surrounding the breast were simulated
in two steps. First, a 3-D optical simulation was performed to
estimate the photoacoustically induced initial pressure distribu-
tion. Second, a slice from this 3-D volume was selected, and
a 2-D acoustic simulation was performed to propagate the initial
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pressure distribution forward in time to obtain the pressure
field at each transducer location.

The 3-D optical simulation was performed using a GPU-
accelerated Monte Carlo (MC) method.39 The initial pressure
distribution was calculated as the product of absorbed optical

energy density, given by the MC simulation, and the
Grueneiser parameter, which was assumed to be a constant.
The simulation volume was 94.8 × 160.6 × 4 mm3 with a
voxel size of 0.2 mm. Light was delivered via four slit-shaped
illuminations that enclosed the central X-Y plane (z ¼ 0 mm).

Fig. 4 Extracted blood vessels, skin, fat, and fibroglandular tissues from patient 1, with scattered
fibroglandular breasts. Colors in (e): white, vessel; light gray, fibroglandular; dark gray, fat.
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The z ¼ 0 mm slice was selected for the 2-D simulation
study. The transducer ring had a radius of 100 mm and was con-
sisted of 512 equally spaced transducer elements. The pressure
was simulated using the k-Wave toolbox40 for a record time of
200 μs at a sampling frequency of 50 MHz. When generating

the forward pressure, a pixel size of 0.1 mm was employed.
No stochastic noise was added to the measured data.

The initial pressure distribution was reconstructed using the
full-wave iterative image reconstruction method described by
Huang et al.12 No regularization was employed. To avoid inverse

Fig. 5 Extracted blood vessels, skin, fat, and fibroglandular tissues from patient 2, with heterogeneously
dense breasts. Colors in (e): white, vessel; light gray, fibroglandular; dark gray, fat.

Journal of Biomedical Optics 041015-8 April 2017 • Vol. 22(4)

Lou et al.: Generation of anatomically realistic numerical phantoms for photoacoustic and ultrasonic breast imaging



crime,41 different temporal and spatial sampling rates were
employed for the reconstruction as compared with the genera-
tion of the measurement data. For the reconstruction, a pixel size
of 0.2 mm and a temporal sampling rate of 25 MHz were
employed.

Two variants of this reconstruction approach were consid-
ered. In the first, the acoustic properties were chosen to be
homogeneous with values equal to their corresponding back-
ground values. In the second, the acoustic properties of the
medium were set to their true values. The initial pressure

Fig. 6 Extracted blood vessels, skin, fat, and fibroglandular tissues from patient 3, with extremely dense
breasts. Colors in (e): white, vessel, light gray, fibroglandular, dark gray, fat.
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distribution along with the speed of sound and density distribu-
tions is shown in Fig. 10. Note that in the initial pressure dis-
tribution, only superficial blood vessels are visible. This is partly
due to the limited light penetration within the breast. The

reconstructed images, after 40 iterations, are shown in Fig. 11.
From these results, we see that failure to compensate for
acoustic heterogeneities can result in errors in the estimated
initial pressure distribution. This is consistent with previous

Fig. 9 From left to right: theX -Y slice,X -Z slice,Y -Z slice, and the 3-D rendered view of the segmented-
tissue phantom for patient 3, with extremely dense breasts.

Table 1 Optical and acoustic property values used in simulation.

Tissue type μa (cm−1) μs (cm−1) g n Sound speed (m/s) Density (kg∕m3)

Background (water) 0 0 0.99 1.33 1500 1000

Blood vessel 9 179 0.975 1.38 1584 1040

Skin 0.08 500 0.99 1.40 1650 1150

Fat 0.05 159 0.95 1.40 1470 937

Fibroglandular 0.04 133 0.95 1.40 1515 1040

Note: μa, optical absorption coefficient; μs, optical scattering coefficient; g, scattering anisotropy; n, refractive index.

Fig. 8 From left to right: theX -Y slice,X -Z slice,Y -Z slice, and the 3-D rendered view of the segmented-
tissue phantom for patient 2, with heterogeneously dense breasts.

Fig. 7 From left to right: theX -Y slice,X -Z slice,Y -Z slice, and the 3-D rendered view of the segmented-
tissue phantom for patient 1, with scattered fibroglandular breasts.
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studies7–10,12 that have demonstrated that consideration of the
acoustic properties of the medium is necessary for accurate
PACT image reconstruction.

6 Summary
In this work, we proposed a computational methodology for
generating 3-D optical and acoustic breast phantoms from con-
trast-enhanced MR data for use in PACT and USCT. The gen-
erated phantoms depict the skin layer, vascular structures, and
the volumetric distribution of different tissue types in the breast.
Examples of generated phantoms were presented.

The generated phantoms can be employed to facilitate many
simulation tasks. In addition to the PACT validation study per-
formed in this paper, another example is the computation of
task-based measures. It is advocated in the modern imaging sci-
ence literature to utilize task-based measures of imaging system
performance to guide the optimization of system design and
image reconstruction algorithms18,42–44 to produce images that
are not simply visually attractive, but are the most informative
with respect to the diagnostic task at hand. For the computed
task-based measures to be informative not only for a specific
subject but also for a general patient population, the structural
variations in breasts across different patients need to be taken
into consideration. This cannot be achieved using simple phan-
toms made from blobs or cylinders, which do not accurately
reflect the complex structures in the breast. Our method provides
a viable and convenient way for generating an ensemble
of breast phantoms that include structural variations across

different people, thereby enabling more reliable task-based mea-
sures to be computed for breast imaging research.

This work also has certain limitations. First, the phantoms in
this study correspond to breasts in a free-hanging position. Some
imaging systems may arrange the breast in other positions or
may require the breast to be compressed during the imaging
procedure. In these cases, the generated phantoms need to be
carefully adjusted and distorted to compensate for the change
in breast shape. Second, in our study, MR data from healthy
patients were employed, and as a result, the methodology
does not consider the segmentation of tumors nor their inclusion
in the produced phantoms. Segmenting tumors from MR breast
data remains an area for future work. For simulation studies that
involve tumors, artificial synthetic tumors can be manually
inserted into our phantoms.
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