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Introduction

Abstract. Given that breast cancer is the second leading cause of cancer-related deaths among women in the
United States, it is necessary to continue improving the sensitivity and specificity of breast imaging systems that
diagnose breast lesions. Photoacoustic (PA) imaging can provide functional information during in vivo studies
and can augment the structural information provided by ultrasound (US) imaging. A full-ring, all-reflective,
illumination system for photoacoustic tomography (PAT) coupled to a full-ring US receiver is developed and
tested. The US/PA tomography system utilizes a cone mirror and conical reflectors to optimize light delivery
for PAT imaging and has the potential to image objects that are placed within the ring US transducer. The conical
reflector used in this system distributes the laser energy over a circular cross-sectional area, thereby reducing
the overall fluence. This, in turn, allows the operator to increase the laser energy achieving better cross-sectional
penetration depth. A proof-of-concept design utilizing a single cone mirror and a parabolic reflector is used for
imaging cylindrical phantoms with light-absorbing objects. For the given phantoms, it has been shown that there
was no restriction in imaging a given targeted cross-sectional area irrespective of vertical depth, demonstrating
the potential of mirror-based, ring-illuminated PAT system. In addition, the all-reflective ring illumination method

shows a uniform PA signal across the scanned cross-sectional area. © The Authors. Published by SPIE under a Creative
Commons Attribution 4.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication,
including its DOI. [DOI: 10.1117/1.JB0O.24.4.046004]
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develop new or complementary breast cancer imaging modalities

The combined ultrasound (US) and photoacoustic (PA) tomo-
graphic imaging system described in this paper has broad
imaging applicability. With its full-ring US receiver and illumi-
nation source, one potential application could be breast imaging.
Breast cancer is a common cancer type among women and is
amajor health concern affecting many lives worldwide. In 2018,
it was estimated that the number of newly diagnosed breast
cancer cases around the world will be above 2 million.'
Mammography, magnetic resonance imaging (MRI), and
B-mode US are three of the most common imaging modalities
used for breast cancer screening,>® and each has its unique
shortcomings. Mammography has low sensitivity in detecting
breast lesions in women with high-density breast tissue, which
is critical since this population is considered to be at a higher
risk of developing breast cancer.>** MRI can be used in conjunc-
tion with mammography to detect breast tumors in dense
breasts.>® However, the availability and cost of MRI imaging
restrict the accessibility of this modality. Conventional B-mode
US is one of the most widely used medical imaging techniques
for screening various types of human tissues, and it is a high-
sensitivity, non-ionizing, and low-cost tool that can produce
images in real time.”® Yet its low specificity in breast screening
can lead to unnecessary biopsies.”' Therefore, it is essential to
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that minimize or eliminate the existing limitations.

Ultrasound tomography (UST), employing a ring-shaped US
transducer, has shown promise for breast cancer screening.''~!
Moreover, PA imaging has demonstrated potential in detecting
carcinomas'®!” and angiogenesis due to tumor growth.'®!” The
addition of photoacoustic tomography (PAT) to the UST imag-
ing can enhance a physician’s diagnostic capability by providing
functional information about the tissue of interest. Moreover,
PA imaging can be easily integrated with UST since the two
modalities share the same acquisition hardware. Previous PA/
PAT visualization tools>*2* either suffer from the use of ineffi-
cient illumination methodologies or distort the breast tissue,
reducing tissue circulation which may affect the PA results.

A significant challenge for PAT breast imaging is providing
sufficient fluence for the desired cross section, while avoiding
the maximum permissible exposure (MPE) limit for the tissue.
For a full-ring illumination system, expanding the illumination
area will help deliver a higher laser energy per pulse to the
targeted cross-sectional slice, while keeping fluences below the
American National Standards Institute limits.”> For example,
a 10-mm diameter laser beam, with 200-mJ/pulse energy will
result in fluence of 253 mJ /cmz. However, using the cone-
shaped reflector and the parabolic reflector to create the omni-
directional ring illumination pattern, with a 5-mm thickness and
a 10-cm diameter cross-sectional area, will result in a fluence
of 12.7 mJ/cm?. In this example, the fluence of the full-ring
illumination system is about 20 times lower than that of direct
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illumination, and it is below the MPE limit which is 20 mJ/ cm?
for 532 nm.

The full-ring illumination system has been used in other
applications by deploying either a cone mirror or conical lens
combined with an acoustically penetrable optical reflector
(APOR).?*2 However, the APOR’s low power threshold and
acoustical transparency make it an impractical solution for
full-ring illuminated systems. At the same time, the transmission
coefficient of the APOR is affected by the incidence angle of
the acoustical signal,”® so a 45-deg APOR, which should be
used in this prototype, will have about 65% US transmittance.
Conversely, any design using lenses to create a ring beam”’-*°
reduces the wavelengths available for spectroscopic imaging
due to possible chromatic aberrations. To overcome earlier lim-
itations, the full-ring US/PA tomography system using omnidi-
rectional optical reflectors is proposed, which can deliver the
needed energy for imaging and is vertically translatable to
image the entire breast.3!=**

The all-reflective, ring illumination PAT system proposed in
this paper provides a practical, easily scalable, low fluence imaging
system, capable of imaging tissue-mimicking phantoms with sig-
nificant depth. The three-mirror system presented in this paper is
capable of dispersing the light energy over a greater area to reduce
the energy fluence, and in the process illuminates more of the tis-
sue which overcomes the light penetration limitations for PAT im-
aging. In the first two experiments, a ring illumination source was
used with a linear US transducer to study the efficiency of full-ring
illumination in tissue-mimicking phantoms. In the final experi-
ment, a proof-of-concept PAT imaging prototype consisting of
a cone-shaped reflector, a large parabolic reflector, a tunable
laser source, and a UST engine equipped with a ring US trans-
ducer, was used to image a tissue-mimicking phantom. The data
generated using this system are presented with an eye toward
laying the groundwork for a future three-mirror system with
near-normal tissue illumination and even greater imaging depth.

2 Material and Methods

2.1 Development and Validation of Ring-lllumination
Optical System with Linear Array Acquisition

The performance of the ring illumination mode was evaluated
with regard to the PA imaging depth using two tissue-mimicking
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phantoms made of 10% porcine gelatin (G2500, SIGMA-
ALDRICH, Missouri) and 0.2% cellulose (S5504, SIGMA-
ALDRICH, Missouri). For the first experiment, a 700-ym
diameter graphite absorber was inserted obliquely into a gelatin
phantom, and the PA signal was measured with respect to the
horizontal depth [Fig. 1(a)]. The illumination source for the
experiment was a pulsed 532 nm, Nd:YAG, 8-ns laser
(Quanta-Ray Pro 270, Spectra-physics, California) with an out-
put of 10 mJ per pulse. A 100-mm diameter parabolic mirror
(45-944, Edmund Optics, New Jersey) and cone-shaped reflec-
tor (68-791, Edmund Optics, New Jersey) were used to create
the ring beam by adjusting the distance between the cone mirror
and the parabolic ring reflector [Fig. 1(b)]. For the second
experiment, a 70-mm diameter gelatin phantom containing
two graphite absorbers with 500-ym diameters were placed in
two planes [Fig. 1(c)] and imaged to determine the maximum
imaging depth and the plane selectivity of the full-ring illumi-
nation method. Large scale parabolic reflector (P19-0300,
Optiforms Inc., California) with 243-mm diameter was utilized
with a cone-shaped reflector to create a large ring-shaped beam
with 4-mm thickness. A 532-nm laser source (PhocusCore,
Optotek, California) was used, resulting in 4.77 mJ/cm? flu-
ence in the targeted cross-sectional area. In this experiment,
it was not possible to adjust the position of the ring beam,
so the beam was 17 mm below the targeted cross-sectional area
[Fig. 1(c)]. In both experiments, a programmable US scanner
(Vantage 128, Verasonics Inc., Washington, USA) was utilized
with an L11-4 linear array transducer, operating at 8.4 MHz
center frequency, for US and PA signal acquisition.

2.2 Photoacoustic Tomography Using Full-Ring
lllumination and Ring-Shaped Transducer

The full-ring US transducer and illumination system, shown in
Fig. 2(a), also used a gelatin phantom for system characteri-
zation. In this experiment, an 89 mJ/pulse laser source
(PhocusCore, Optotek, California, USA) was expanded to a ring
shape, resulting in 4.7 mJ/cm? of fluence at 532 nm. The ring
US transducer has a 200-mm inner diameter and comprised 256
elements, with an element pitch of 2.45 mm and a height of
9 mm. In PAT mode, the scattered signals were recorded by all
256 elements at a sampling rate of 8.33 MHz. The 243-mm
diameter parabolic reflector and the cone-shaped reflector
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Fig. 1 (a) Experimental setup of the breast phantom embedded with a diagonal graphite absorber and
(b) the photograph of the same experimental setup. (c) Diagram showing the dimensions of the tissue-
mimicking phantom used for the second experiment. The US scanning area is enclosed in the red dashed
lines, and the ring beam has fallen 17 mm below the targeted cross section.
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Fig. 2 (a) The setup for the full-ring illumination and full-ring acquisition experiments. The cone-shaped
mirror and the parabolic reflector create the ring-shaped beam for the scanned cross section. The ring
beam is positioned 10 mm below targeted cross-sectional slice for the discussed experiments. (b) The
diagram shows the dimension of the tissue-mimicking phantom and the position of the graphite rods from

the bottom slice (slice 1) to the top slice (slice 3).

were used to create the ring-shaped beam with 4-mm thickness
on the phantom surface. The phantom used for this experiment
was 7.5 cm in diameter and made of 12% porcine skin gelatin
(G2500, SIGMA-ALDRICH, Missouri) mixed with 0.4% cellu-
lose (S5504, SIGMA-ALDRICH, Missouri). Three graphite
rods, with 2-mm thickness, were placed horizontally inside
the phantom in three layers [Fig. 2(b)]. The ring beam was
adjusted on each cross-sectional slice by translating the phantom
in the vertical direction. The results from this experiment dem-
onstrated the uniqueness of the all-reflective PAT system in cre-
ating co-registered PA-US tomographic images with significant
depth and will be discussed further in the results section.

3 Results and Discussion

3.1 Photoacoustic Results Using Full-Ring
lllumination with a Linear Array Transducer

Figure 3 plots the PA image for the diagonal graphite absorber in
gelatin for the experimental setup shown in Fig. 1(a). A clear PA
signal is detected within the field of view of the linear array US
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Fig. 3 (a) The PA signal distribution across the illuminated cross-
sectional slice of the gelatin phantom. (b) The graph demonstrates
a normalized PA amplitude versus depth. A uniform PA signal ampli-
tude is seen between the depths of 10 and 20 mm.
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transducer, and a depth of 25 mm inside the phantom is imaged.
As anticipated, the PA signal intensity is the largest superficially
and is attenuated with horizontal depth [Fig. 3(a)] due to absorp-
tion and scattering. The normalized PA amplitude versus hori-
zontal depth for this image is plotted in Fig. 3(b), demonstrating
the depth dependence of the fluence and the relative uniformity
of the PA signal within the middle portion of the phantom.
The uniform PA signal between 10 and 20 mm underscores
the effectiveness of omnidirectional ring illumination in provid-
ing a uniform fluence map within a targeted cross section.
In an ideal PA platform, the fluence is depth-independent, and
the proposed ring illumination system (Sec. 3.3) can enhance
the PAT imaging by providing a more uniform illumination
map. The PA signal after 25 mm disappears as the angled
optical absorber moves outside of the selected illuminated
cross-sectional area.

Figure 4 plots the results from the second experiment, which
used two graphite absorbers in separate planes, as shown in
Fig. 1(c). Since the linear array transducer has a limited field
of view, only a section of the horizontal graphite absorber is
shown in Fig. 4(a). As anticipated, both objects can be seen
in the US image, while in the PA image, the targeted layer
shows a high PA signal which demonstrates the selectivity of
the full-ring illumination mode in imaging a targeted cross-
sectional slice. The full-ring illumination is also able to deliver
sufficient energy to the core of the 70-mm tissue-mimicking
phantom [Fig. 4(b)]. This finding highlights the benefit of the
ring-illumination system which allows for a lower fluence and
a greater cross-sectional illumination depth. The limited field of
view of the linear transducer used in these experiments would
also not be a problem for the full-ring US transducer, where all
objects would be visualized regardless of the location.

It is important to mention that there was an observed PA sig-
nal from the middle layer of the phantom (at a depth of 30 mm)
which happened due to two reasons. First, the phantom was cre-
ated in two parts by initially pouring the first layer and then
allowing it to set so it could support the graphite rod, after
which a second layer of the same material was poured to finish
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Fig. 4 (a) The US image (left) showing the graphite absorbers in two different planes. The interface seen
in the picture is an artifact of the phantom-making process. The PA image (right) shows the top and the
bottom graphite absorbers, with a more visible top object. (b) The plot of the normalized PA signal ampli-
tude across the top and bottom graphite absorbers. The targeted, top graphite absorber has a larger PA

signal amplitude.

the phantom. The setting process of the first layer and the pos-
sible settling of the cellulose scattering material could have cre-
ated the PA signal seen at the interface. The second reason is
related to the incident position of the ring beam on the interface
surface between two layers of gelatin phantom which is located
at 20 mm above the bottom graphite.

3.2 Large-Scale Omnidirectional lllumination for
Full-Ring Photoacoustic Tomography
Experiment

Figure 5 shows the UST and PAT images of the full-ring tomog-
raphy system shown in Fig. 2(b). The UST images are recon-
structed using the waveform method,* and PAT images are
reconstructed using the backprojection method.** For the back-
projection reconstruction, the RF signals received at each trans-
ducer across multiple acquisitions of the same slice are averaged
together to increase the signal-to-noise ratio (SNR). In Fig. 5,
the top and bottom cross-sectional slices, which are separated
by 4 cm of gelatin, are shown. In general, the results demon-
strate the vertical depth-independent imaging capability of the
full-ring illumination system utilizing a ring US transducer.
The normalized PA amplitude as a function of the horizontal
depth for the three different cross sections is shown in Fig. 6.
As anticipated, all three slices showed high PA signal close to
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the outer surface, and the signal degraded slightly as the hori-
zontal depth increased. In general, the results once again showed
the deposited energy uniformity within the phantom, irrespec-
tive of vertical imaging depth.

To increase the fluence in the central part of the scanned
slice, it is important to improve the incident angle of the ring
beam and the incident location of the ring beam with respect
to the targeted cross-sectional area. In the previous experiment,
the ring beam was positioned 10 mm below the targeted
cross-sectional slice. Future works will examine the effects
of target illumination as a function of beam position below
a cross-sectional area and the resulting PA image quality.

3.3 Future Work: An Optimal, Adjustable,
All-Reflective, Full-Ring Illlumination
Photoacoustic Tomography System

For the full-ring illumination and US transducer system, the sin-
gle cone mirror and parabolic reflector imaging system is able to
create a ringed beam with a 39-deg angle with respect to the
phantom surface. To improve the efficiency of the illumination,
it is important to enhance the incident angle of the ring beam.
The proposed three mirror system (Fig. 7) will have a tissue
incidence angle of 66-deg with respect to the object surface,
as opposed to 90-deg or normal incidence, which is anticipated

April 2019 « Vol. 24(4)
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Fig. 5 (a) UST and (b) PAT images of slices 1 and 3, showing the 8-cm graphite absorber in the tissue-
mimicking phantom. The full-ring illumination is able to visualize the whole objects in all slices.
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Fig. 6 Normalized PA amplitude across the 8-cm graphite object for
all three cross-sectional slices, demonstrating the uniformity of the PA
signal across the targeted cross-sectional slice.

to improve the PAT results. This system consists of a cone-
shaped reflector and two conical reflectors which can be
adjusted independently for scanning the length of a cylindrical
object. As shown in Fig. 7, the collimated beam from the laser
source is directed normally to the cone-shaped reflector, and
upon reflection, a circular beam is directed toward the stationary
conical ring reflector. The stationary conical ring reflector then
transmits the cylindrical-shaped beam to the mobile conical mir-
ror which focuses the beam onto the targeted slice of the object.
The cone-shaped reflector and the first stationary mirror are
external to the water tank that houses the second mobile mirror
and the ring US transducer.
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During the scanning, the mobile conical reflector moves
synchronously with the ring US transducer. Since the mobile
reflector is placed below the transducer level, the breast tissue
coverage will be identical to the UST and imaging areas close to
the chest wall is feasible. The size and profile of the breast
are defined by the UST images, which will be used to find
the optimal position of the mobile reflector and adjust it to
match the illumination and the acoustic acquisition planes.
The design is verified by using ray tracing, which showed
that it could illuminate breast tissue of 140 mm in diameter.

4 Conclusions

Multiple, proof-of-concept experiments using mirror-based,
full-ring illumination systems were presented in this work for
PAT imaging. A diagonal graphite absorber in gelatin and planar
graphite absorbers were used to demonstrate uniformity of the
illumination system, irrespective of vertical imaging depth.
These experiments were followed by a full-ring illumination
and full-ring US transducer system, which again demonstrated
the energy uniformity within the phantom even with a non-opti-
mal 39-deg illumination angle. Last, a proposed three-reflector,
ring illumination US/PAT system was presented with a 66-deg
illumination angle, which promises exciting future results for
medical diagnosis due to its practicality of design and ease
of scalability. All of the presented setups achieve a low fluence
due to their inherent ring design and will no doubt benefit
patients and clinicians in future imaging and diagnostic needs.
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