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ABSTRACT. Significance: Fluorescence molecular tomography (FMT) is a promising imaging
modality, which has played a key role in disease progression and treatment
response. However, the quality of FMT reconstruction is limited by the strong scat-
tering and inadequate surface measurements, which makes it a highly ill-posed
problem. Improving the quality of FMT reconstruction is crucial to meet the actual
clinical application requirements.

Aim: We propose an algorithm, neighbor-based adaptive sparsity orthogonal least
square (NASOLS), to improve the quality of FMT reconstruction.

Approach: The proposed NASOLS does not require sparsity prior information and
is designed to efficiently establish a support set using a neighbor expansion strategy
based on the orthogonal least squares algorithm. The performance of the algorithm
was tested through numerical simulations, physical phantom experiments, and small
animal experiments.

Results: The results of the experiments demonstrated that the NASOLS signifi-
cantly improves the reconstruction of images according to indicators, especially for
double-target reconstruction.

Conclusion: NASOLS can recover the fluorescence target with a good location
error according to simulation experiments, phantom experiments and small mice
experiments. This method is suitable for sparsity target reconstruction, and it would
be applied to early detection of tumors.
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1 Introduction
Fluorescence molecular tomography (FMT) is a promising imaging technology that noninva-
sively and dynamically offers a 3D visualization of the biological process in-vivo at the cellular
and molecular levels.1–4 Consequently, it greatly promotes its application in small animal
research and preclinical diagnosis.4,5 However, the reconstruction of FMT is severe ill-posed
caused by the strong scattering of near-infrared photons propagation in biological tissues.
In addition, the number of measurements available is typically much smaller than the number
of unknowns, which aggravate the under-determination of the reconstruction.6,7
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To alleviate the ill-posedness, great effort has been made on the reconstruction algorithms.
Effective regularization methods are developed, such as Tikhonov regularization, Lp-norm
(0 < p ≤ 1) regularization, total variation regularization, and hybrid regularization.8–12 FMT
is widely used in the early tumor detection. The tumor is small and sparse compared to the entire
imaging domain. Tikhonov regularization, however, often provides an over-smoothed result and
is absence of details in the local features.13,14 As a consequence, sparsity regularization methods
are beneficial in this case. L0-norm is an ideal sparsity regularizer, which can provide the sparsest
solution. In this work, L0-norm regularization has been utilized to establish the mathematical
model of the inverse problem and a greedy algorithm is developed to solve this model.
Greedy algorithm is a signal recovery technology for an underdetermined linear system follow-
ing the principle that the sparsity can be exploited to recover signals from few samples if the
system matrix satisfies the restricted isometry property.15,16 For example, the previously proposed
orthogonal matching pursuit (OMP) is simple and effective. It selects the atom which is the most
related to the current residual at each iteration.17 However, an inaccurate result will be obtained
when the columns in the system matrix have strong correlation. Compressive sampling matching
pursuit (CoSaMP) is designed for better atom selection and adopts the backtracking strategy to
improve the accuracy.18 These algorithms need to know the sparsity in advance. However, the
sparsity is usually unknown in the reconstruction process. Thong et al. proposed the sparsity
adaptive matching pursuit algorithm to reconstruct the signal without prior information of the
sparsity.19,20 This algorithm has provided the sparsity by increasing the size of the support set
with a fixed step size. But it will generate an inaccurate sparsity, which further leads to incorrect
results.20 There are substantial ongoing researches related to the field of adaptive sparse method.
These studies have been applied to FMT reconstruction and achieved great success.21–23 In addi-
tion, the greedy algorithms mentioned above more easily get to a local optimal solution instead
of the global optimal solution. In general, these methods cannot do very well in multi-target
reconstruction.17

In practical applications, the real sparsity cannot be known in advance. Orthogonal least
square (OLS) algorithm needs to input the sparsity manually based on experience.24 In each
iteration, only one column index with the highest correlation is selected to be incorporated into
the support set, which result in a worse reconstruction accuracy. In this work, neighbor-based
adaptive sparsity OLS (NASOLS) is developed. This algorithm can provide the sparsity adap-
tively without knowing sparsity beforehand. A neighbor expansion strategy based on tetrahedron
element is presented to provide the support set, which can preserve the local spatial structure
information. This effective scheme has improved the resolution of double-target reconstruction.
To verify the performance of NASOLS algorithm, numerical simulation experiments, phantom
experiment, and small animal experiments were designed in this study. Adaptive sparsity OLS
(ASOLS) without neighbor strategy, OLS, CoSaMP, and generalized OMP (gOMP) are selected
as the comparative methods. The experimental results show that the NASOLS algorithm has the
potential for reconstruction of FMT, especially for multi-target reconstruction.

The outline of this paper is listed as follows. The mathematical model of reconstruction
problem and adaptive neighbor OLS algorithm are described in Sec. 2; Sec. 3 presents the results
of simulation experiments, phantom experiments, and small animal experiments with the OLS
and comparative methods; in Sec. 4, the discussions of the performance of NASOLS and con-
clusions of this work are shown.

2 Methods

2.1 Mathematical Model of Reconstruction Problem
In general, the light propagation is described by the radiative transfer equation.25 However, it is
difficult to solve this complex integro-differential equation. Diffusion equation (DE) is a popular
approximation in highly scattering biological tissues.26,27 For continuous wave FMT model, two
coupled diffusion equations should be used to describe the behaviors of the excited and the emit-
ted light. And finite element method (FEM) is utilized to solve the coupled DEs.28 Finally, a
linear relationship between the surface photon intensity of the emitted light and the distribution
of fluorescent yield inside the object can be constructed as follows:
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EQ-TARGET;temp:intralink-;e001;117;736Φm ¼ AX; (1)

where Φm is the surface photon intensity, which is measured by detectors. A is the system
matrix. X denotes the distribution of fluorescent yield to be reconstructed. More detailed descrip-
tions can be found in Refs. 12, 13, and 29. Solving Eq. (1) suffers from being ill-posed. The L0

regularization is utilized, and Eq. (1) is rewritten as follows based on compressed sensing
theory:30

EQ-TARGET;temp:intralink-;e002;117;659min
x

kXk0; subject to kAX −Φmk22 < ε; (2)

where kXk0 is the L0-norm, and ε is a given threshold.

2.2 Neighbor-Based Adaptive Orthogonal Least-Squares Method
In this section, we present a neighbor-based adaptive OLS (NAOLS) to solve Eq. (2). The spe-
cific process of NAOLS is as follows:

1. Define column index selection formula: the critical point of this method is to select the
most appropriate column indexes to add into the support set. This method sequentially
projects columns of A onto a residual vector. Specifically, in the i’th iteration, the proposed
method chooses new column indexes according to the equation

EQ-TARGET;temp:intralink-;e003;117;514J ¼ arg max kqjk2; (3)

where

EQ-TARGET;temp:intralink-;e004;117;478 qj ¼ aTj r
i

aTj t
i
j
tij ; (4)

EQ-TARGET;temp:intralink-;e005;117;434 tiþ1
j ≜ aj −

P
i
l¼1

aTj ul
kulk22

ul ¼ tij −
ti
T

j ui

kuik2
2

ui ; (5)

where, ri represents the residual vector of the i’th iteration, t0j ¼ aj, aj is the j’th column of
A, ui represents the orthogonal basis vector of the i’th iteration.

2. Calculate sparsity Ki and parameter Li: conventional OLS methods need to preset the
sparsity coefficient K empirically, whereas sparsity may not be available in many practical
applications, which greatly limits the practicality of FMT reconstruction. Here, based on
the initial sparsity K0, we adopt the sparsity adaptive strategy. A nonlinear function was
utilized to adjust the adaptive step size. It can be divided into two parts: (a) fast estimation
of large step size in the initial stage, and (b) the completion stage is gradually approached
in small steps. It is expressed as follows:

EQ-TARGET;temp:intralink-;e006;117;308Ki ¼ Ki−1 þ
�
K0 ·

�
1

iþ 1

�
2
�
; (6)

Fig. 1 (a) Schematic diagram of exponential function. (b) Neighbors of red node are black nodes,
the green nodes are the irrelevant nodes of the red node.
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EQ-TARGET;temp:intralink-;e007;114;724Li ¼ Li−1 −
�
L0 ·

�
1

iþ 1

�
2
�
; (7)

where I is the iteration number, Li is the number of columns added to the support set in i’th
iteration, L0 is the initial parameter. d·e means round up. In initial stage, the step size takes
a suitable initial value, and each time Ki and Li are changed by Eqs. (6) and (7). The
advantage of step change of nonlinear function is that the step change in the initial stage
is large, and the step change in the completion stage is small, as shown in Fig. 1(a). This
means the proposed method can approach the real sparsity more quickly. According to
Eqs. (6) and (7), the sparsity Ki increases, the parameter Li decreases.

3. Update the support set: considering that tumor always grows in a certain region, which
when compared to the whole domain is sparse enough. To utilize the local spatial structure
information sufficiently, we proposed a novel neighbor strategy based on the finite element
theory. The neighbor set is constructed according to the tetrahedral element structure, as
shown in Fig. 1(b). Suppose Si represents the support set generated from the i’th iteration.
Let any node Gk ∈ Si, then the nodes with tetrahedral edge connection relationship with
node Gk are the elements of the neighbor set. According to this rule, finding the neighbor-
hood of all nodes in Si and uniting all neighborhood sets to form the final neighbor set Ei.
The neighbor operator process is described by Nð·Þ, namely Ei ¼ NðSiÞ. Selecting Liþ1

nodes from Ei according to Eq. (3) and adding them into the support set Si to form a new
support set Siþ1. That is, Siþ1 ¼ Liþ1ðEiÞ ∪ Si, where Liþ1ðEiÞ indicates selecting Liþ1

nodes from Ei.
4. Update the residual: setting the ri as the residual vector represents the i’th iteration, where

the residual vector required for the next iteration was formed as

EQ-TARGET;temp:intralink-;e008;114;449uiþ1 ≜ qj; riþ1 ¼ ri − uiþ1: (8)

5. Terminate the iteration: circulating the Steps (2) to (4), in each cycle i ¼ iþ 1. The algo-
rithm terminates when the halting condition is satisfied. The error reaching an acceptable
range ri < ε, the first Ki columns of the final support set are solution sets.

Algorithm 1 Neighbor-based adaptive sparsity orthogonal least squares method.

Input: System matrix A, Surface photon distribution Φm ,

threshold ε, initial sparsity K 0, initial parameter L0

Output: recovered support Si , estimated signal x̂

Initialize: support set S0 ¼ ∅, iteration number i ¼ 1,

residual vector ri ¼ Φm , tij ¼ aj , qj ¼
aTj r

i

aTj t
i
j
tij , E

1 ¼ NðS1Þ

S1 was generated from choosing L0 columns by Eq. (3)

While: krik2 ≥ ε do

1. Calculate sparsity K i and parameter Li by Eqs. (6) and (7);

2. Select Liþ1 largest terms from Ei according to Eq. (3) into Si , utilize neighbor operator Nð·Þ to obtain
neighbor set Ei ;

3. i ¼ i þ 1;

4. Siþ1 ¼ Liþ1ðEi Þ ∪ Si , Liþ1ðEi Þ indicates to select Liþ1 nodes from Ei ;

5. Perform (8) Li times to update fUzgLiz¼1 and ri ;

6. tiþ1
j ¼ tij −

ti
T
j ui

kuik22
ui ;

end while

7. the solution x̂ ¼ K i ðSi Þ
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3 Experiments and Results
In this section, experiments were carried out to evaluate the performance of NASOLS, including
numerical simulation experiments with single target and double targets, phantom experiments
with double targets, and small animal implanted experiments. The sparsity levels of ASOLS,
OLS, CoSaMP, and gOMP are set to 4, 10, 8, and 6. The error in halting condition for different
methods is set to 1e−8. The experiment codes were written in MATLAB and all these processes
were executed on a desktop computer with 3.20 GHz Intel Processor i7-8700 CPU and 16 GB
RAM. To quantify the reconstruction performance, location error (LE), normalized root-mean-
square error (NRMSE), and contrast-to-noise ratio (CNR) were adopted in this study.31,32 The
detailed formula descriptions can be found in the literature.32 In general, a high-quality recon-
structed image possesses LE, NRMSE, close to 0 and a high CNR value.

As shown in Fig. 2, the initial value of L0 have affected the recovered results. The initial
value of K0 and L0 was determined based on the results of NASOLS. We set K0 increased by 6
every time from 6 to 30, and L0 increased by 5 every time from 5 to 25. Figure 2 shows the
quantitative reconstruction results with different L0 and K0. It can be seen that when L0 ¼ 10,
K0 ¼ 6, NASOLS achieved small LE, small NRMSE and large CNR. So the initial values of K0

and L0 in NASOLS are set to 6 and 10.

3.1 Numerical Experiments
A 3D digital mouse model was employed,31 as shown in Fig. 3(a). The torso section of the
mouse, including heart, lung, liver, stomach, kidneys, and muscle, was the investigated region.
The optical parameters of the main organs were the same as used in literature.13,33,34 Figure 3(b)
shows the reconstruction mesh of the torso section for the inverse problem. It contains 5890
nodes and 29,308 tetrahedral elements. Here, the fluorescent target was excited by eight point

Fig. 2 Quantitative comparison of parameter L0 and K 0 test. (a)–(c) LE, NRMSE, and CNR for
different K 0 and L0. (d) Fixed K 0 ¼ 6, the LE for different L0.
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Fig. 3 (a) 3D digital mouse model, (b) reconstruction mesh for the inverse problem, and (c) plane
of excitation sources. The black points are the location of the isotropic point sources. For each
excitation source, fluorescence is detected at the opposite side with a 120 deg FOV.

Fig. 4 (a)–(e) Recovered results by 3D views. The red spheres represent the actual fluorescent
target and the green areas denote the reconstructed one. (a1)–(e1) Sagittal slices, (a2)–(e2) coro-
nal slices, and (a3)–(e3) transverse slices. The white circles denote the real target.
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sources at different positions in sequence as shown in Fig. 3(c). The black dots represent posi-
tions of the excitation point sources, which were modeled as isotropic point sources located one
mean free path of photon transport beneath the surface. For each excitation source, the surface
data on the opposite side with a 120 deg field of view (FOV) were measurable.

3.1.1 Single target reconstruction

Figure 4 shows the reconstructed results with eight projections measurements. In the single target
experiment, a sphere with radius of 1 mm was placed in the liver with center at (18.0, 12.0,
16.4 mm). The fluorescent yield of the target was set to be 0.05 mm−1. In the forward problem,
the digital mouse model is a mesh with 24,041 nodes and 1,27,248 tetrahedral elements. The first
row is the 3D views of the FMT images reconstructed using the NASOLS, ASOLS, OLS,
CoSaMP, and gOMP, respectively. The red sphere is the real target, and the green area is the
reconstructed target, respectively. The second column is the coronal slices, the third column
is the sagittal slices, and the fourth column is the transverse slices. The white circle denotes
the actual position of the target. The corresponding quantitative indicators are given in
Table 1. It is obvious that the proposed algorithm achieved the smallest LE and NRMSE and
largest CNR. It provided better results than the other four approaches, which indicated that our
method has the ability for the single target reconstruction.

As shown in Fig. 5, different projection numbers (2, 4, 8, 16) simulations have been
conducted to show the relationship between the number of projections and the reconstruction
accuracies of different algorithms. In the experiments, take projection number of 16 as example,
NASOLS provides the smallest LE, NRMSE and the largest CNR compared to the other
four methods. With the increasing of projection number, the recovered results became more accu-
rate for most cases. However, NASOLS provided largest CNR with 8 projections, not 16 pro-
jections, so did ASOLS, OLS, and gOMP. The reason may be that the redundant information
appeared with the increasing of projection numbers, which in turn affected the reconstruction
accuracy.

Table 1 Quantitative results of single target reconstruction experiment.

Method Center (mm) LE (mm) NRMSE CNR

NASOLS (17.81,12.06,16.02) 0.41 0.0012 2.29

ASOLS (17.51,12.16,16.65) 0.57 0.0012 1.61

OLS (18.32,12.18,17.03) 0.73 0.0016 1.58

CoSaMP (17.59,12.12,16.92) 0.66 0.0014 0.84

gOMP (17.09,12.23,16.54) 0.89 0.0014 1.52

Note: The best results are in bold.

Fig. 5 The quantitative analysis of single target with different projection numbers by NASOLS,
ASOLS, OLS, CoSaMP, and gOMP. (a)–(c) LE, NRMSE, and CNR of five methods.
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Experiments with different levels of noise (5%, 10%, 15%, 20%, and 25% Gaussian noise)
of the measurements were carried out to study the effect of noise on the reconstruction results. It
was clear that the recovered results became worse with the increasing of the noise levels, as
shown in Fig. 6. However, NASOLS performed best of five methods according to LE,
NRMSE, CNR.

3.1.2 Double-target reconstruction

In this section, double targets with different edge to edge distance (EED) were designed to further
show the performance of the algorithm. Two spheres with radius of 1 mm were placed in the
center of (16.0, 14.5, 14.0 mm) and (20.0, 14.5, 14.0 mm), respectively.

The EED of the two spheres is 2 mm, and the forward mesh had 24,275 nodes and 1,28,635
tetrahedral elements. When the EED was set to be 3 mm, the center of two targets were (15.0,
14.5, 14.0 mm) and (20.0, 14.5, 14.0 mm). Its forward mesh of digital mouse concluded 19,306
nodes and 1,01,362 tetrahedral elements. When the EED was set to be 4 mm, the center of two
targets were (16.0, 14.5, 14.0 mm) and (22.0, 14.5, 14.0 mm). In total, 19,339 nodes and
1,01,562 tetrahedral elements were included in the forward mesh. The difficulty of reconstruction
increases with the decrease of EED, so the double-target experiments with different EEDs could
reflect the spatial resolution. Figures 7(a)–7(e) show the reconstructed results when the EED was
2 mm. When the EED was 2 mm, ASOLS, gOMP, and OLS cannot distinguish two targets. Both
of NASOLS and CoSaMP had the ability to distinguish two targets. But, there were a lot of
artifacts by CoSaMP reconstruction. Figures 7(f)–7(j) show the recovered results when the
EED was 3 mm. gOMP and OLS could only reconstruct one target, which was close to the
middle of the two targets. ASOLS could reconstruction one target accuracy. NASOLS and
CoSaMP could reconstruct two targets. However, the artifact of one target reconstructed by
CoSaMP is large, the location error of two targets by CoSaMP is larger than NASOLS.
Figures 7(k)–7(o) show the reconstruction results when the EED was 4mm. OLS could only
recover one target. NASOLS could recover the two targets very well, which was better than
the other four algorithms. From the quantitative results in Table 2, NASOLS had the smallest
LE, the smallest NRMSE, and the largest CNR when EED was 2, 3, or 4 mm.

Double targets (EDD at 4 mm) with different projection numbers (2, 4, 8, 16) were also
carried out and the recovered results are shown in Fig. 8. Take projection number of 16 as
an example, NASOLS has also performed best according to LE, NRMSE, and CNR compared
to the other four methods. In addition, we have found that when the projection number is too
small, ASOLS and OLS cannot distinguish two targets. For example, OLS could only recover
one target with projection numbers 2 and 4, so did ASOLS with 2 projections. Then, it can be
seen that there is no result for these cases, as shown in Fig. 8(a).

Double-target (EDD at 4 mm) experiments with different levels of noise (5%, 10%, 15%,
20%, and 25% Gaussian noise) of the measurements have also been conducted. From Fig. 9(a), it
is clear that OLS cannot distinguish two targets if there was noise on the data. It indicated that
OLS is sensitive to noise. When noise level is 15%, 20%, and 25%, ASOLS cannot distinguish
either. Anyway, NASOLS provided best results according to LE, NRMSE, and CNR.

Fig. 6 Quantitative results of single target with different levels of noise (5%, 10%, 15%, 20%, and
25% Gaussian noise). (a)–(c) LE, NRMSE, and CNR of five methods.
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3.2 Real Experiments
In this section, physical phantom and small animal experiments were conducted to further evalu-
ate the algorithm. First, the real fluorescence data was collected by the FMT/micro-computed
tomography (CT) dual modality imaging system, as shown in Fig. 10. It is a full-angle, non-
contact imaging system. This system could obtain fluorescence signals and structural informa-
tion simultaneously. The excitation light with 670 nm wavelength was provided by a continuous

Fig. 7 Double-target recovered results with different EEDs. (a)–(e) 3D view results when the EED
is 2 mm by NASOLS, ASOLS, OLS, CoSaMP, and gOMP. (a1)–(e1) Transverse slices at
z ¼ 14.0 mm. (f)–(j) 3D view results when the EED is 3 mm by the five methods. (f1)–(j1)
Transverse slices at z ¼ 14.0 mm. (k)–(o) 3D view results when the EED is 4 mm. (k1)–(o1)
Transverse slices at z ¼ 14.0 mm. The white circles represent the real targets.
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wave laser source (CrystaLaser, Reno, Nevada, and Model No. CL671-050-O). The rotational
stage could rotate by the computer. And a highly sensitive charge-coupled device (CCD) camera
(Princeton Instruments PIXIS 2048B, Roper Scientific, Trenton, New Jersey, United States),
which was cooled to −80°C to reduce the effects of thermal noise, was used to collect the

Table 2 Quantitative results of different EED experiments.

EED (mm) Methods Center (mm) LE1 (mm) LE2 (mm) NRMSE CNR

2 NASOLS (19.10,13.57,14.09) 1.29 1.02 0.0035 1.84
(16.20,13.50,13.82)

ASOLS (18.79,13.55,14.15) 1.54 2.13 0.0041 1.33
(17.76,13.29,13.91)

OLS (18.92,13.87,14.89) 1.57 3.51 0.0042 1.32
(13.00,15.52,12.50)

CoSaMP (18.43,14.02,14.11) 1.64 1.28 0.0064 0.82
(17.01,13.83,13.56)

gOMP (18.39,14.34,15.53) 2.20 2.01 0.0049 0.63
(17.83,13.67,13.65)

3 NASOLS (19.60,14.22,14.85) 1.00 0.88 0.0027 2.28
(15.58,13.95,14.46)

ASOLS (19.37,13.59,13.82) 1.12 1.65 0.0033 1.89
(16.35,13.59,13.74)

OLS (18.60,13.79,13.88) 1.51 2.89 0.0035 1.88
(17.85,14.14,13.68)

CoSaMP (19.22,13.39,13.59) 1.43 1.01 0.0053 1.01
(15.07,14.55,15.06)

gOMP (18.22,14.08,13.77) 1.81 1.82 0.0031 0.95
(16.78,14.70,13.71)

4 NASOLS (22.13,7.10,14.10) 0.44 0.70 0.0011 2.83
(16.66,7.77,14.02)

ASOLS (20.89,8.02,13.95) 1.22 0.97 0.0023 2.39
(16.93,7.76,14.08)

OLS (20.07,7.78,14.21) 1.95 1.46 0.0025 2.29
(17.07,8.03,14.83)

CoSaMP (20.73,7.46,13.92) 1.26 0.89 0.0022 1.62
(16.70,7.27,13.49)

gOMP (20.51,7.52,14.61) 1.45 1.47 0.0027 1.55
(17.19,6.98,13.32)

Note: The best results are in bold.

Fig. 8 The quantitative analysis of double targets with different projection numbers by NASOLS,
ASOLS, OLS, CoSaMP, and gOMP. (a)–(d) LE1 (Target 1), LE2 (Target 2), NRMSE, and CNR of
five methods.
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emitted light. Micro-CT system includes an x-ray detector (1512N-C90-HRCC, Dexela, United
States) and an x-ray generator (L9181-02 MT2195, Hamamatsu Photonics, China). The control
module has a 360-deg motorized turntable (RAK100, Zolix, China) and a controller (Zolix
Instruments Co., Beijing, China). The x-ray source and x-ray detector are placed on the same
line. In addition, The CCD was perpendicular with this line. Different projections of fluores-
cence images could be obtained by rotating the stage. In general, optical images were collected
first, and then the CT data were followed by the micro-CT systems. Main organs could be seg-
mented from the CT data, and a heterogeneous mouse model could be obtained. The optical
parameter of main organs were the same as used in literature.13 A mesh for the inverse problem
was provided by discretizing heterogeneous mouse model. The fluorescence image was mapped
to the mesh to obtain the measurement data.35

3.2.1 Physical phantom experiment

The phantom, a cube with a side length of 25 mm, was made of polyformaldehyde. Its optical
parameters for both excitation and emission wavelengths are the same as illustrated in Ref. 36,
which were determined by diffuse optical tomography. Two small holes with 1 mm radius were
drilled to emplace the Cy5.5 solution. The Cy5.5 solution was injected into the holes, which
became two cylindrical targets with a height of 2.0 mm. Their centers were (5.0, 10.0,
15.0 mm) and (5.0, 15.0, 15.0 mm) with EED of 3 mm, as shown in Figs. 11(a) and 11(b).
The mesh for the inverse reconstruction was discretized into 6031 nodes and 32,430 tetrahedral
elements. Here, four projections were acquired by rotating the phantom with an angular incre-
ment of 90 deg. The fluorescent targets were excited by point sources from four different posi-
tions at the z ¼ 15.0 mm plane and CCD acquired data at four different views, as shown in
Fig. 11(d).

Figure 12 shows reconstruction results with 3D and transverse views. It is clear that the
proposed method could distinguish two targets while ASOLS, OLS, and gOMP could not
do from the 3D views, shown in Figs. 12(a)–12(e). For CoSaMP method, one of the recon-
structed targets was in the middle of two actual targets, and the artifacts appeared, which would

Fig. 10 FMT/micro-CT dual modality imaging system.

Fig. 9 The quantitative analysis of double targets with different levels of noise by NASOLS,
ASOLS, OLS, CoSaMP, and gOMP. (a)–(d) LE1 (Target 1), LE2 (Target 2), NRMSE, and
CNR of five methods.
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mislead researchers. The transverse views in Figs. 12(f)–12(j) had also given the similar con-
clusion. From Table 3, the LE by NASOLS is the smallest, NRMSE is the smallest, and CNR is
the largest. This means NASOLS provided the best results of the five methods.

The phantom experiments with different projections (1, 2, 3, 4) were carried out too.
Figure 13 showed the recovered results for five methods. With the increasing of projection

Fig. 12 The phantom experiments results. (a)–(e) 3D view of results using NASOLS, ASOLS,
OLS, CoSaMP, and gOMP, respectively. (f)–(j) Transverse views at Z ¼ 15 mm slices.

Table 3 Quantitative results of double-target reconstruction in physical phantom experiment.

Methods Center (mm) LE1 (mm) LE2 (mm) NRMSE CNR

NASOLS (4.48,14.92,15.44) 0.68 0.80 0.0082 2.82
(5.36,10.65,14.70)

ASOLS (4.38,11.62,14.53) 1.81 — 0.0092 2.42
—

OLS (5.44,13.50,14.60) 1.61 — 0.0099 2.42
—

CoSaMP (4.48,14.92,15.44) 0.68 2.37 0.0087 1.56
(5.62,12.21,14.43)

gOMP (4.37,12.32,14.14) 2.88 0.96 0.011 2.31
(5.09,10.95,15.06)

Note: The best results are in bold.

Fig. 11 (a) Physical phantom; (b) geometric structure of the cubic phantom with double targets
(2 mm in diameter and 2 mm in height); (c) reconstruction mesh for the inverse problem; (d) x -y
view on the z ¼ 15.0 mm plane, where the black dots represent the excitation point source posi-
tions. Four degrees show the direction of the CCD camera during data acquisition.
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numbers, the reconstruction results were improved according to the evaluation index for five
methods. It is clear that the quantitative indicators of the results with four projections were
better than those of the results with one projection. And NASOLS provided the best results.
In addition, ASOLS and OLS algorithms can only reconstruct one target, then there is no result
in Fig. 13(b).

3.2.2 In-vivo experiments

To further evaluate the performance of the proposed algorithm, implanted in-vivo experiments
were performed on two small mice. All animal studies were performed in accordance with the
Fourth Military Medical University Guide for the Care and Use of Laboratory Animals formu-
lated by the National Society for Medical Research. To relieve the pain of the mouse, the experi-
ment was conducted under isoflurane gas anesthesia. In addition, Cy5.5 solution with
concentration of 4000 nM was injected into the glass tube with a diameter of 2.1 mm and a
height of 2.8 mm. The glass tube was implanted into the adult mouse (excitation spectrum
at 671 nm, emission spectrum at 710 nm). First, we collected the fluorescence images and then
the CT data. After segmentation, we can obtain the main organs of mouse, including heart, lung,
liver, kidney, and muscle, etc.

Figure 14 shows the recovered results on 3D views and 2D views combined with CT for two
mice. For two mice, the real center locations of the targets are at (19.8, 27.1, 8.1 mm) and (14.6,
19.4, 7.1 mm), respectively. The inverse mesh of Mouse 1 has 3878 nodes and 18,866 tetrahedral
elements while the mesh of Mouse 2 has 9466 nodes and 47,631 tetrahedral elements. Table 4
shows the quantitative results for two mice by NASOLS, ASOLS, OLS, CoSaMP and gOMP,
respectively. In the 3D views, the real target and reconstructed target were depicted with red and
blue regions respectively. It is clear that OLS and gOMP algorithms has provided a deviated

Fig. 13 The quantitative analysis of phantom experiments (two targets) with different projections
(1, 2, 3, 4) for five methods: (a) and (b) LEs, (c) NRMSE, and (d) CNR.
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result with great error, whereas NSAOLS can locate the target center more accurately according
to the 3D views and transverse views for both two mice. Similar conclusions can also be drawn
from LE, NRMSE, CNR of Table 4. It can be concluded that NASOLS shows good advantages
compared with the other four methods.

4 Discussion and Conclusion
In this paper, we proposed an adaptive sparsity with neighbor strategy orthogonal least-squares to
solve L0-norm regularization problem in FMT. An adaptive strategy was proposed to enhance the

Fig. 14 In-vivo experiment results on small animals. (a)–(e) Recovered results for Mouse 1 by
NASOLS, ASOLS, OLS, CoSaMP, and gOMP, respectively. (g)–(j) Reconstruction results for
Mouse 2 by NASOLS, ASOLS, OLS, CoSaMP and gOMP, respectively. In the 3D views, the red
region represents the real target and the blue region is the recovered results.
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practicability of our algorithm. A nonlinear function was presented to adjust the sparsity step, so
the estimated sparsity can quickly approach the real sparsity. Then, the nearest neighbor strategy
based on a finite-element tetrahedral mesh structure was used to form the support set, which has
enhanced the local connection characteristic. Actually, the optimal solution based on FEM was
usually distributed around the maximum energy node. The nearest neighbor idea was taking
advantage of this property, so the developed method could provide more accurate recovered
results, especially for the double-target reconstruction. From the double-target simulation experi-
ments, NASOLS could clearly distinguish two targets with EED at 2, 3, and 4 mm. In fact, FMT
is heavily influenced by light scattering and it is difficult to achieve such resolutions in the real
biological applications. Here, the double-target reconstructions were carried out in a completely
ideal environment. The external noise, the error caused by the real experimental measurement
and so on were not considered here. In the real experiments, all these external factors will also
interfere with the reconstruction results and it is hard to achieve such resolutions. Different pro-
jection numbers in the single-target and double-target simulation. It demonstrated that the exper-
imental results had become better with the increasing of projection numbers. However, the results
became worse when the number of projections reached a certain number. For example, the recov-
ered results with 16 projections were not better than those of eight projections in the simulations
according to the evaluating indicators. The reason might be that the redundant information
appeared with the increasing of projection numbers, which in turn affected the reconstruction
accuracy. In addition, different levels of noise were added to the measurements and the results
showed that as the levels of noise increased, the recovered results has become worse according to
the evaluating indicators.

The accuracy of photon propagation model could be improved by combining anatomical
information acquired from CT or magnetic resonance imaging into FMT reconstructions. In this
work, the measurement data were detected by a FMT/micro-CT dual imaging system. The ana-
tomical information were provided by micro-CT. Some researchers have introduced diffusion
optical tomography (DOT) into FMT to provide optical parameters, which further improved the
quality of FMT.37 However, the inverse problem of DOT is also severely ill-conditioned and ill-
posed, and its reconstruction results are still susceptible to noise.

Apart from the traditional iteration-based regularization methods, deep learning has become
one of the fastest-growing breakthrough technologies in recent years. There are generally two
types of deep learning methods for FMT, namely end-to-end deep neural network and post
processing methods. Traditional methods can provide the mathematical model from physical
theory while deep learning is difficult to give a theoretical explanation for the FMT forward
model. In addition, the design of network architecture and training schemes determine the

Table 4 Quantitative results of in-vivo experiment.

Methods Center (mm) LE (mm) NRMSE CNR

Mouse 1 NASOLS (19.6,27.4,6.9) 1.2 0.0013 0.49

ASOLS (19.3,26.2,5.8) 2.4 0.0015 0.31

OLS (16.9,23.6,6.7) 4.7 0.0024 0.29

CoSaMP (19.6,27.1,5.9) 2.1 0.0017 0.19

gOMP (18.8,25.4,5.4) 3.3 0.0020 0.20

Mouse 2 NASOLS (14.0,20.7,7.3) 1.4 0.0010 1.02

ASOLS (13.1,20.9,7.5) 2.1 0.0012 0.66

OLS (12.1,17.5,5.7) 3.4 0.0013 0.47

CoSaMP (13.5,21.4,7.4) 2.2 0.0010 0.87

gOMP (13.5,21.6,7.5) 2.7 0.0015 0.58

Note: The best results are in bold.
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performance of deep learning-based methods. Even so, deep learning based methods still has
unprecedented advantages in FMT.

In summary, NASOLS algorithm improves the reconstruction performance of FMT from the
experimental results. Therefore, this new method can promote the practical application of FMT in
clinic. However, there are still some deficiencies. First, the selection of nearest neighbor nodes
might be repeated in the reconstruction process, which resulted in time consuming of reconstruc-
tion process. Second, the NASOLS algorithm could improve the target location but its ability to
reconstruct the shape of target was poor. As we all know, the shape reconstruction of FMT is very
important and it is still a great challenge in practical applications. We will continue to work
towards this shape reconstruction of target in the future.
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