
International Conference on Space Optics—ICSO 2012
Ajaccio, Corse
9–12 October 2012

Edited by Bruno Cugny, Errico Armandillo, and Nikos Karafolas

Conceptual design of a stray light facility for Earth observation 
satellites

Y. Stockman

M. L. Hellin

S. Marcotte

E. Mazy

et al.

International Conference on Space Optics — ICSO 2012, edited by Bruno Cugny, Errico Armandillo, Nikos Karafolas
Proc. of SPIE Vol. 10564, 1056402 · © 2012 ESA and CNES · CCC code: 0277-786X/17/$18 · doi: 10.1117/12.2309193

Proc. of SPIE Vol. 10564  1056402-1



Conceptual design of a stray light facility for earth 
observation satellites 

Y. Stockman*, ML Hellin*, S. Marcotte*, E. Mazy*, 

* Centre Spatial de Liège - Université de Liège,
Avenue du Pré-Aily, 

4031 Angleur, Belgium 
e-mail address ystockman@ulg.ac.be

J. Versluys**, M. François***, M. Taccola***, A.
Zuccaro Marchi*** 

** OIP Sensor Systems, Westerring 21, B-9700 Oudenaarde, 
Belgium. 

*** ESTEC – European Space Agency, Keplerlaan 1, NL-
2200 AG Noordwijk ZH, The Nederlands

Abstract — With the upcoming of TMA or FMA (Three or 
Four Mirrors Anastigmat) telescope design in Earth 
Observation system, stray light is a major contributor to the 
degradation of the image quality. Numerous sources of stray 
light can be identified and theoretically evaluated. 
Nevertheless in order to build a stray light model of the 
instrument, the Point Spread Function(s) of the instrument, 
i.e., the flux response of the instrument to the flux received at
the instrument entrance from an infinite distant point source
needs to be determined.
This paper presents a conceptual design of a facility placed in
a vacuum chamber to eliminate undesired air particles scatter
light sources. The specification of the clean room class or
vacuum will depend on the required rejection to be measured.
Once the vacuum chamber is closed, the stray light level from
the external environment can be considered as negligible.
Inside the chamber a dedicated baffle design is required to
eliminate undesired light generated by the set up itself e.g.
retro reflected light away from the instrument under test. This
implies blackened shrouds all around the specimen.
The proposed illumination system is a 400 mm off axis
parabolic mirror with a focal length of 2 m. The off axis
design suppresses the problem of stray light that can be
generated by the internal obstruction. A dedicated block
source is evaluated in order to avoid any stray light coming
from the structure around the source pinhole. Dedicated
attention is required on the selection of the source to achieve
the required large measurement dynamic.

I. INTRODUCTION

The Centre Spatial de Liege (CSL) has been involved since 
twenty years in the characterization and evaluation of stray 
light for space instruments (ref [1] to [5]). Today CSL is 
developing a new facility for the stray light characterization of 
small earth observation satellites. Stray light issues are tackled 
in different ways. For large payloads deep stray light analysis 
is carried out, tests at subsystem are performed or partial 
illuminations are also envisaged. For small EO satellite, it is 
possible to perform an end to end test to evaluate the stray 
light characteristic of the instrument. 

II. TEST FACILITY REQUIREMENTS

For an optical system, the stray light contributions may be 
summed as In-field Stray light (IFS) and Out-of-field Stray 
light (OFS). The major stray light contributions are:  
- the effects of mirror roughness,
- the effects of dust on the mirrors,
- the scattering induced by the aperture stop,
- the effects of ghosts,
- the stray light due to Sun and Moon, or any intense light
source out of the FOV.

The facility will not be able to directly identify the sources of 
stray light listed here above, but it will verify that the stray 
light contribution for along track angles (taken in absolute 
values) larger than 10 arc degrees or for across track angles 
larger than 25 arc degrees are negligible, and to confirm  the 
dominant contributor to stray light. For example in the case of 
PROBA V that will be the first tested payload in this facility, 
the major in field stray light contributor is the aperture stop. 
The models indicate that aperture stop contribution to stray 
light is close to flat with respect to any angular contribution 
and extend typically on +/-9 arc degrees in the along direction 
and +/-22.5 arc degrees in the across direction. The mirror 
roughness and dust contributions are indistinguishable in 
practice and bear a strong angular variation from the incident 
direction.  

III. TEST FACILITY CONCEPT DESCRIPTION

A. Stray light test facility overview
The facility is in a clean room to eliminate undesired air 
particles scatter light sources and to allow to work with space 
hardware. To cope with this, the stray light facility is 
developed in a vacuum chamber. The baseline is to use the 
vacuum chamber closed, in such a way that the stray light 
levels from the external environment are negligible.  
Inside the chamber dedicated baffle design is studied to 
eliminate undesired light generated by the set up itself e.g 
retro reflected light away from the instrument under test. This 
implies blackened shrouds (with AZ603 or MAP) inside the 
facility. 
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baffle should retro reflect light as less as possible. Black 
velvet is proposed since this material presents the lowest 
hemispherical reflection. 
This rectangular baffle will leave the whole SI baffle 
illuminated. 

V. MGSE MECHANICAL GROUND SUPPORT EQUIPEMENT

The MGSE is the same as the one developed for the PROBA 
V calibration ([6]). The rotating table is a XMM heritage that 
was used to calibrate the XMM Newton Mirror Modules. The 
table is able to support more than 1 ton. The angular range is 
+/- 200°, with a resolution lower than 5 arcsec. To achieve the 
along track angle, a Tip Tilt table inherited from the Planck 
Primary reflector cryo characterization is used and is 
interfaced on the rotating table. The motors have a stroke of 
200 mm allowing to achieve a range of +/- 13 arcdegrees. The 
coders on the translation motor have a resolution of 2 μm, that 
will allow a tilt position with a resolution of 1 arcsec. Figure 
10. gives a picture of the MGSE during calibration.

Figure 10.  Mechanical Ground Support Equipement 

VI. PAYLOAD REQUIREMENTS

In order to perform the alignment of the tested payload with 
respect to the line of sight of the collimator, it is required to 
have an alignment cube that materializes the orientation of the 
LOS of the tested payload. The proposed way to proceed is to: 

a) sight the collimator pinhole with a theodolite,
b) integrate the Payload on the MGSE,
c) perform an auto collimation on the payload alignment

cube with the help of the MGSE,

d) adjust the payload position with respect to the
alignment cube localization versus payload line of
sight.

VII. OGSE STRAY LIGHT PERFORMANCES

A. Radiometric budget

With the selected source the achieved radiance levels at the 
output of the collimator are about 4000 W/m².sr.μm, which is 
about 4 to 5 decades brighter that the L1 ground luminance 
level. The 3 to 4 additional decades can be accessed by 
changing the integration time and keeping a SNR lower than 
10 (this is pending on the detector performance of the tested 
payload). So, in practice a level of 108 can be achieved.  
To achieve the 1010 level for out of field stray light 
measurement, the laser diode is used. With the 20W laser 
diode, this level is easily achieved (up to 1012 is possible with 
the same assumptions as here above). 

B. Stray light simulation

The stray light facility is modeled in FRED® non sequential 
ray tracing software. The model considers the F3 vacuum 
chamber and the auxiliary chamber with their optical benches 
with a specular metallic reflection. All the baffles are 
considered MAP PU1 painted and diffused. The BRDF model 
used is presented in Figure 11.  

Figure 11.  MAP PU1 paint BRDF profiles 

The Raytracing model with and without vacuum chamber is 
presented in Figure 12.  
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Figure 12.  Raytracing model with (top) and without (bottom) vacuum 

chamber 

The tested instrument is summarized by its front panel 
(assumed coated with MAP PU1 paint). The detector is a 50 x 
200 mm² rectangle corresponding to the entrance baffle size of 
the payload. This can be enlarged until its stays within a 
diameter of 300 mm. 
The collimator model consists into: 

- The FPA with its light trap (see Figure 13. )
- The truss with all additional baffles (see Figure 14. )
- The optics (i.e. parabolic mirror and fold mirror).

Figure 13.  FPA assembly model  

Figure 14.  Collimator model 

1) Stray light performances

The stray light performances are analyzed in terms of nearfield 
and farfield contributions: 
For the nearfield contributions, we have first the stray light 
induced by optical surfaces scattering due to particulate 
contamination on the mirrors (parabolic mirror and fold 
mirror) and the microroughness: 1.2 nm for parabolic mirror 
and 0.4 nm for fold mirror. Additionally to this the stray light 
induced by the collimator FPA assembly and the one induced 
by the payload baffle are considered. 
For the farfield contributions the stray light induced by the 
payload baffle and the one induced by air dust are computed. 
For the optical surface particulate contamination stray light 
contribution, it is considered that both parabolic mirror and 
fold mirror are assumed contaminated between CL250 and 
CL100 surface cleanliness (according MIL-1246C standard). 
Both situation have been computed and are presented in 
Figure 15. It indicates that a class 100 is mandatory to stay 
within the requirements. 

Figure 15.  Impact of optical surface cleanliness on nearfield stray light FPA 
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The stray light contribution coming from the mirrors micro 
roughness has not yet been computed. It will be performed 
using a Harvey model or similar. 
For the FPA assembly stray light contribution, it is assumed 
MAP PU1 black paint coating for the FPA assembly. With 
these assumptions the FPA assembly stray light contribution is 
lower than 10-10 (see Figure 16. for the intensity level and 
Figure 17. for the intensity pattern). 

Figure 16.  Impact of FPA assembly on nearfield stray light 

Figure 17.  Stray light angular pattern at SI level from the FPA assembly 

The Payload baffle near field stray light contribution is linked 
to the ĭ300 mm entering beam into the facility baffle that hits 
the payload baffle and is diffused into the auxiliary chamber 
and the F3 chamber. Backscattering towards this baffle and 
the tested instrument induces stray light that has been 
computed and is presented in Figure 18. for the intensity and 
Figure 19. for the intensity pattern. 

Figure 18.  Impact of payload baffle diffusion onto the nearfield stray light 

Figure 19.  Stray light angular pattern at SI level from the payload baffle 
diffusion  

Payload baffle far field stray light contributions are not yet 
computed but the stray light level for far field should stay 
below 10-11. 

VIII. TEST PHILOSOPHY

The major difficulty is to perform the stray light calibration 
with the flight detectors, since basically it is required to 
illuminate one pixel with and intensity 108 much higher that 
its neighbor. Several problems can occur, does the detector 
survive to a level 108 more intense than its detection level, is 
there no cross talk from the saturate pixel to the neighbor one. 
The proposed test philosophy is to not illuminate the central 
pixel directly with a powerful beam. The assumption is that 
usually for earth observation multi spectral imager, a line 
detector oriented across track is used. With this type of 
configuration it is possible to illuminate a fictive pixel along 
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track with an intensity as high as needed, unless the stray light 
contribution does not damage the actual pixel. Nevertheless, it 
is required to measure the incident flux.  
The measurement philosophy will be as follow. The measured 
pixel is illuminated with an attenuated flux close to three 
quarter to pixel saturation level. This represented the I0 level. 
The next step consists to illuminate a fictive pixel by sighting 
up or down along cross, and to increase the signal. The 
increase of signal is monitored by two detectors to be able to 
monitor correctly the 8 orders of magnitude. The signal is 
recorded by all the pixels of the line. The next step consists to 
move by two fictive pixels (from the nominal position) along 
track and to record the signal once again. This is repeated as 
many times as needed to cover the requested FOV where the 
stray light needs to be measured. At the end of the process, by 
assembling the adequate line, a PSF is recorded, where only 
the central line is missing except the central pixel. 

IX. CONCLUSIONS

Stray light characterization of Earth Observation satellites has 
become a growing necessity to guarantee the mission success.  
To fulfill this, a new stray light test facility is under 
development at CSL. In this paper we have demonstrated that 
the ability to measure PSFs at below 1E-10 should be possible 
from the visible till the Near Infra Red. The facility will be 
able to test payload of several 100 of kg with FOV of +/- 300 
arc degrees across track and +/- 15° along track. Using a 
square allows to reverse these capacities. The acquired data 
will not allow to identify each of the stray light source 
mechanisms; it provides the integrated PSF taking into 
account all the contributors. Nevertheless the big advantage of 
this stray light test facility is its ability to measure In field 
stray light. The measurement will not only be used for the 
final acceptance of the instruments but also for removing the 
stray light contribution from the in flight data images. This is 
possible since a particular test philosophy is proposed 
allowing to test the payload with it final detectors. A spectro 
imager module of PROBA V (a Belgium Earth observation 
satellite ref [6]), will use the facility to carried out the stray 
light calibration of the instrument. 
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