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ABSTRACT 

Biological soft tissues are functional agglomerates of cells. They constitute the microenvironment where intercellular 
communication occurs. In turn, their woven structure underlies mechanical properties that contribute to their roles in the 
context of the organs and the organisms that contain them. Therefore, determining the density and spatial distribution of 
cells within the tissue offers key information for understanding its physiological properties and its state. X-ray holographic 
nanotomography is a non-destructive imaging technique capable of resolving subcellular details in biological tissues that 
has shown promising advantages to study the structure of neuronal circuits. However, the dimensions of the datasets 
required – covering volume landscapes of ~mm3 – make manual annotation of individual nuclei an unrealistic task. We 
developed and trained an automated image segmentation classifier that accurately detects and segments cell nuclei in 
mouse brain tissue imaged with X-ray holographic nanotomography, and that generalises to similar datasets obtained from 
biological replicates with minimal additional ground truth. It provides the spatial locations and morphologies of the ~80k 
nuclei per dataset with a high recall. It harnesses the strengths of a high-performance computing cluster and embeds the 
curated results in two main simplified outcomes: a data table and explorable image segmentations and meshes associated 
with the original dataset, in a browser-compatible format that simplifies proofreading by multiple users. The classifier we 
present here can be readily integrated into an automated analytical pipeline for histological datasets obtained with 
synchrotron X-ray holographic nanotomography in the context of systems neuroscience as well as broader tissue life 
science studies. 

1. INTRODUCTION
Biological soft tissues are functional substrates at the intersection between the cell and the organ-organism levels. From a 
functional perspective, they play critical roles at both scales: On one hand, they constrain how neighbouring individual 
cells can interact with each other. On the other hand, their woven structure provides emerging mechanical characteristics 
that become a critical part of their roles, e.g. defining essential properties in smooth, skeletal or cardiac muscles. When 
looking at the brain, histology becomes an integral part in the study of neuronal circuits – ensembles of interconnected 
neurons constrained in space that perform a certain computation. However, while tissues have long been studied at the 
macroscopic [1] and at the microscopic level [2], a multiscale study of biological tissues has not been technologically 
feasible until recently: resolving subcellular features across 1 mm3 requires leveraging 3D image datasets in the terabyte 
range. 
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Automation of volume electron microscopy [3-6] has unlocked the potential to bridge those two scales and already 
provided insights on how different tissues operate [7-9]. More recently, other nondestructive approaches have shown the 
capacity to operate in this regime, either employing light [10, 11] or X-rays [12, 13] as illumination source. In particular, 
X-ray holographic nanotomography (XNH) [14] has proven capacity to resolve subcellular features across landscapes that 
extend to the mm scale in samples with preserved ultrastructure and can be compatible with follow-up volume electron 
microscopy [12, 15, 16]. 

In turn, automated image segmentation algorithms have seen an unprecedented improvement in recent years and high-
performance compute clusters have become widely accessible to the materials and life sciences domains [17, 18]. 
Pioneering efforts in volume electron microscopy have provided essential datasets that facilitated training the first 
generation of connectome-delivering classifiers [19-21]. 

However, while obtaining mm-scale volume datasets at subcellular resolution is becoming a routine approach, instance 
classifiers that generalise well across independently sourced datasets of the same tissue are not common, resulting in a 
bottleneck in the data analysis pipeline. Here we aim to address this bottleneck by developing a nuclei classifier for mouse 
olfactory bulb tissue. 

Cells are the essential components of tissues, and therefore the distribution and shape of their nuclei defines essential 
properties of the tissue itself. But their manual annotation is unfeasible already at the mm-scale: 1 mm3 of mouse brain 
tissue contains on the order of 2*105 nuclei and a 0.5 cm3 mouse brain contains 100*106 [20, 22]. Moreover, cell nuclei 
display a characteristic set of morphological traits that make them good targets for automated image classifiers: they have 
a compact shape, with volumes within a narrow range, and the ultrastructure of their interior - the nucleoplasm - often 
displays a distinct pattern to the adjacent cytosol of the cell that contains it. Therefore, classifiers aimed at segmenting 
nuclei can be trained to recognise not only the thin nuclear membrane but also the nucleoplasm. 

While several tools have been developed to detect subcellular features in volume EM images [23-25], specific solutions to 
automatically retrieve nuclei across mm-scale datasets acquired by XNH are not yet developed. Those classifiers will 
provide unique insights on the typical counts, sizes and distributions of cells within the context of tissues.  

Here, we developed and trained an image classifier that reliably segments cell nuclei in mouse brain tissue volumes 
acquired with XNH. It operates integrated on a high performance computing cluster, providing straightforward scalability 
to larger volumes within the terabyte scale. It detects the shapes, volumes and positions of cell nuclei in tissue volumes 
from the mouse olfactory bulb with high precision and recall across multiple cell layers and generalises well to analogous 
datasets. This makes it an essential tool integrated in a broader image analysis pipeline devoted to mammalian systems 
neuroscience addressing how neuronal circuits compute information given their connectivity [16, 26]. Furthermore, it is 
also applicable to the study of the structure-function of other biological tissues. 

 

2. RESULTS 
We first aimed to automatically detect nuclei in a 3D volume of mouse brain olfactory bulb acquired with X-ray 
holographic nanotomography. The dataset spanned across 0.456 mm3 with voxels of (100 nm)3, containing a continuous 
tissue volume of 0.212 mm3 and was obtained after a non-rigid stitching of 28 individual tiles (Fig. 1a, Table 1) [27]. We 
developed an image segmentation pipeline that provided an automated volumetric labelling for each nucleus inside a 0.197 
mm3 mask that covered the vast majority of the tissue and avoided non-tissue areas (e.g. those regions occupied by bare 
resin or empty space around the sample) (Fig. 1b,c), computed individual meshes for each nucleus (Fig. 1d) and returned 
an indexed table with essential morphometric parameters of each segmented item: its volume, its surface and its sphericity 
(Fig. 1d) [28]. This segmentation pipeline consists of two major steps in sequence (Fig. 1e): an automated instance 
segmentation relying on a trained U-Net architecture [29] followed by a heuristic filtering of segmented instances based 
on the expected volumes and sphericities of nuclei.  
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Figure 1. Workflow to segment cell nuclei in tissue volumes obtained with X-ray holographic nanotomography. 

(a) XNH can provide continuous volumes mapping mm-scale landscapes with subcellular resolution. (b-c) Nuclei can be 
detected and segmented automatically, providing a quantitative insight on their morphologies and distribution in space 
(d). (e) The classifier used consists of a trained U-Net followed by a filter based on prior knowledge on the morphology 

of the targeted features. The arrowheads indicate correctly segmented nuclei (cyan) and  segmentation artefacts discarded 
by the filtering step (yellow). GL, glomerular layer; EPL, external plexiform layer; MCL, mitral cell layer; GCL, granule 

cell layer. 

The volume mapped in this dataset contains all histological layers in the olfactory bulb - each displaying a characteristic 
pattern of nuclei in terms of their individual size as well as in their spatial arrangement (density and distribution). We 
defined subvolumes where all nuclei contained were manually annotated at a 2-fold downscaled version of the datasets: 
(200 nm)3 voxels. A total of 30 subvolumes sampled 4 histological regions of interest: glomerular layer (GL, 10 
subvolumes), external plexiform layer (EPL, 5 subvolumes), mitral cell layer (MCL, 10 subvolumes) and granule cell layer 
(GCL, 5 subvolumes) (Fig. 2a, b). Each of those subvolumes was (50 µm)3 in size to ensure large 20 µm-wide nuclei 
would be fully contained in the training data even in the regions where their density is the lowest, and therefore minimise 
split errors of the classifier. We make all the training and test data openly available for further reuse (see Data Availability 
section). The segmentation workflow consists of a 3D U-Net [29] to obtain a distance prediction, followed by a watershed 
algorithm [30] to generate an instance segmentation of cell nuclei (Fig. 2c). Due to the large size of the datasets, the 
prediction and segmentation was performed in smaller chunks which were merged afterwards.  

Nuclei were positively identified in most cases (Fig. 2d, f) and rarely missed. However, certain features not constituting 
nuclei were also often erroneously classified as such (Fig. 2e). Manual inspection of the false positive segments revealed 
that these were features of diverse nature but with morphologies very distinct from nuclei. An unbiased analysis of 
detection accuracy confirmed this insight: truly detected nuclei clustered together in a parameter space defined by the 
volume and sphericity of the segmented features (Fig. 3e). An optimal double-threshold boundary therefore allowed 
filtering segmented nuclei from the pool of all segmented features: we defined both high-pass thresholds (volume and 
sphericity) by applying a grid-search in 2-fold cross-validation over 12 subvolumes of size (50 µm)3 (Methods). Together, 
the filtered result of the classifier provided a final segmentation for this dataset, consisting of 64166 nuclei (Fig. 3g) with 
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a precision and recall of above 90% across most regions (Fig. 3f). Each detected nucleus was stored with an associated 
identifier, a computed mesh and a summary of its key morphological characteristics (volume, surface and sphericity) (Fig. 
3g, h, i).  

 
Figure 2. Architecture of the classifier 

(a) Training data was obtained by manually annotating all nuclei present in 30 regions of interest each covering (50 
µm)3, distributed across all relevant histological layers of the olfactory bulb tissue in the dataset. (b) Examples of 

manually annotated nuclei in the four layers mapped. (c) Diagram of the U-Net [29] and following segmentation steps. 
(d-f) This classifier provided a good result detecting nuclei (d), while some voxels not belonging to nuclei were 

sometimes also classified as such (e). Similarly, while most non-nuclear features were correctly ignored (f) in very rare 
occasions true nuclei were missed. (g) The 3D segmentations were later converted to standard meshes and stored as 
such, associated with the original dataset. (h) The measured sphericity of closed meshes extracted from segmented 
objects matched expected theoretical values for diverse regular polygon shapes across a broad range of sizes. GL, 

glomerular layer; EPL, external plexiform layer; MCL, mitral cell layer; GCL, granule cell layer. 

Systems neuroscience - and tissue biology more generally - challenges hypotheses through experiments whose readouts 
are often vulnerable to sampling biases and sample preparation procedures. This vulnerability can be sometimes overcome 
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by incorporating sufficient biological replicates in the experimental design. Two more independent datasets reporting 
continuous tissue volumes of 0.269 mm3 and 0.297 mm3 of the same brain region were acquired in a similar way with 
XNH, providing a cohort of 3 comparable datasets (Fig. 3d, j, p, Table 1). We applied the segmentation pipeline without 
modifications to the second dataset (Y391, 0.261 mm3 mask covering most tissue) (Fig. 3j, Table 1) and computed new 
dataset-specific thresholds for volume and sphericity using the same method as for C432 (see Methods) (Fig. 3k, Table 
1). This provided an automated segmentation of 76820 nuclei with a precision and recall above 75% in most regions (Fig. 
3l, m).   

In order to provide a generalisable approach for further datasets, nuclei in the third dataset (Y489) (Fig. 3p, Table 1) were 
segmented using a battery of different classifiers incorporating new additional local ground truth (Fig. 3c). A total of 29 
subvolumes each covering (50 µm)3 and distributed across layers of interest (10 GL, 5 EPL, 10 MCL and 4 GCL) were 
manually annotated for nuclei (Fig. 3a-b). Multiple classifiers were trained using different sets of training data: from the 
unmodified classifier to versions adding groups of 5 additional subvolumes sampling different histological layers from the 
Y489 dataset, to a classifier only trained with the new 29 subvolumes. All classifiers were used to independently detect all 
nuclei in the same Y489 dataset (Fig. 3c). All classifiers showed high precision (>95%) when evaluated on a test set of 14 
subvolumes of (50 µm)3. While the unmodified classifier on the new dataset showed only a 90% recall, addition of 5 
subvolumes to the subset of training data raised the overall recall rate to >95%. The GL and GCL are the two most 
demanding tissue layers for a nuclear classifier: there, cell nuclei are very densely packed, often with little cytoplasmic 
volume in cells whose cell bodies sit directly adjacent to each other (Fig. 3b). The amount of features available to avoid 
misclassification are therefore minimal - often only the nuclear and plasma membranes (as opposed to the histological 
layers EPL and MCL, where cytoplasmic content and neurites of the same and other neurons are often present between 
different nuclei). When observing the performance of those classifiers at the most stringent regions, the addition of all 29 
new subvolumes with locally sourced new training data did not harm performance and in some cases it would seem to 
improve the segmentation of densely packed nuclear clusters in the GCL. Therefore, the final classifier for Y489 used was 
the one trained on all previous and new ground truth data (59 subvolumes (7.35*106 µm3) of training data). It provided an 
automated segmentation of 81779 nuclei (Fig. 3s), with a precision above 95% and recall above 90% across most regions 
(Fig. 3r). 

 
Table 1. Compute time used to run the instance segmentation pipeline and post-processing on each dataset at (200 nm)3 voxels 
(ie, 2-fold downscaling applied to original data). The classifier pipeline was run on a Slurm cluster on several CPU nodes 
equipped with an AMD EPYC 7763 CPU (hyperthreading enabled) of which we used up to 12 cores and 50 GB RAM each. 
The mentioned times include queuing times for sub-tasks. 

dataset total 
volume 

volume of 
tissue 

volume 
processed 

Avg 
precision 

Avg 
recall 

voxel 
prediction 
time 

segmentation meshes sphericity Total  

C432_XNH 0.456 
mm3 

 0.212 mm3 0.197 mm3 0.975 0.962 2h 39min 4h 38min 0h 30min 0h 40min 8h 
27min 

Y391_XNH 0.685 
mm3 

0.269 mm3 0.261 mm3 0.934 0.916 2h 30min 4h 50min 1h 49min 0h 25min 9h 
34min 

Y489_XNH 0.713 
mm3  

0.297 mm3 0.282 mm3 0.943 0.980 10h 44min 14h 19min 6h 41min 0h 26min 32h 
10min 
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Figure 3. Generalisation to other datasets of the same imaging modality and similar characteristics 

(a) Training data was also obtained from a third independently acquired dataset from a new sample that mapped the same 
brain region. (b) Examples of manually annotated nuclei in the four layers targeted. (c) Precision, recall and F1 score of 
the classifier operating on the new dataset when trained with increasing amounts of data sourced from the new dataset. 

(d) Volume rendering of the first dataset. (e) Objects segmented, distributed according to each item’s volume and 
sphericity. Prior knowledge allowed describing thresholds for both metrics, providing a filtered result that detects nuclei 

with high accuracy. (f) Precision and recall on the filtered results at multiple regions of the dataset, including high-
resolution tile centers (ctr) as well as tile border regions (border) from all histological regions. (g) Volume rendering of 
the meshes of all nuclei segmented from this dataset. (h-i) Volumes (h) and sphericities (i) of the segmented nuclei in 

this dataset. (j-o) Same as d-i for the second dataset, segmented with the same classifier without any additional training 
data. (p-u) Same as d-i for the third dataset, using a classifier that incorporates all the newly sourced training data 

(performance shown in (c), 30+29 subvolumes). GL, glomerular layer; EPL, external plexiform layer; MCL, mitral cell 
layer. 

 

3. DISCUSSION 
We have developed an image classifier that accurately segments cell nuclei in 3D maps of mouse brain tissue obtained 
with X-ray holographic nanotomography. This classifier not only provides satisfactory results within the dataset it has 
been trained on, but also generalises its performance to analogous datasets obtained independently with minimal addition 
of locally sourced training data. In this line, we observed a drop in recall when segmenting the Y391 dataset, which could 
be attributed to two factors: poorer signal-to-noise ratio (SNR) of the dataset itself (attributable to being reconstructed 
using tomograms taken at three instead of four distances) and no addition of locally sourced training data. In dataset Y489, 
where both factors were amended, we obtained F1 scores >95%. When comparing its performance within the same dataset, 
across regions with high SNR (tile center) and low SNR (tile border), as expected better performance is achieved where 
SNR is best while providing in all cases a sufficient yield for the intended analyses. Therefore, this classifier will be a 
useful component of an integrated analytical pipeline devoted to analysing mm-scale 3D maps of tissue ultrastructure in 
the mouse brain. 

It operates on datasets that map the dense histology of samples with preserved ultrastructure: the contrast in the images is 
driven by the original distribution of proteins and lipids in space. Its performance on analogous independent datasets 
suggests that the classifier is robust enough to cope with variations of signal and noise patterns in the data. One would 
therefore expect this classifier to provide acceptable results on volumetric datasets reporting tissue ultrastructure obtained 
with any imaging technique that shares the essential features with XNH, such as the data being aligned within < 100nm 
precision in all directions, having isotropic voxels, and the contrast being driven by the distribution in space of all proteins 
and lipids, with an additional set of locally sourced training data comparable to the one reported in our third dataset. While 
focussed ion beam scanning electron microscopy and ptychographic X-ray tomography would most likely fit these 
requirements, other volumeEM techniques such as serial block-face electron microscopy could also be eligible provided 
that the quality of image registration meets the required precision. On the other hand, its performance on datasets obtained 
with imaging techniques that target serial sections (such as ssTEM, gridTape or ATUM-mSEM) will have to be assessed 
independently since these will incorporate slicing-specific artefacts such as cracks and folds that have not been included 
in the training data. 

This classifier structure proved extremely efficient and robust to detect nuclei in XNH datasets. We expect other features 
mapped in these datasets - such as volume occupied by tissue, resin or blood vessels - to be detectable by specifically-
trained classifiers with a  similar architecture, possibly requiring adjustments related to the biological nature of the features. 
Moreover, promising classifiers that segment mitochondria in vEM datasets [24] could be leveraged and incorporated in 
the analytical pipeline to further broaden the insights one can quickly gather automatically from newly acquired XNH 
datasets. 

However, segmentation of features in tissue is fundamentally limited by resolution: biological tissues are composed by 
cells and organelles, and both features are delimited by a 20 nm-thick bi-layered lipidic membrane. While resolving this 
essential 20 nm feature enables segmenting any cell or subcellular component [7, 31-33], relevant merging errors should 
be expected when aiming to segment organelles with coarser resolutions.  
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The analysed areas of the three datasets reported cover mouse brain olfactory bulb tissue volumes of 0.197 µm3, 0.261 
µm3 and 0.282 µm3, and contain 64166, 76820 and 81779 nuclei with an average size of 212.9±0.5 µm3, 207.9±18.9 µm3 
and 217.7±0.4 µm3 and and an average sphericity of 0.8114±2*10-4, 0.7871±3*10-4 and 0.7849±2*10-4, respectively (mean 
± SEM). Addressing these annotations manually would have been unfeasible: allowing 10 seconds to find, annotate and 
proof-read each individual nucleus would involve ~200 human-hours per dataset only to find their locations. Fully 
segmenting them in 3D (to extract their volumes and sphericities), allowing 24 min/nucleus, would take ~30*103 human-
hours per dataset. Recent developments in X-ray imaging and in volumeEM are boosting the capacity to generate these 
datasets at scale – enabling experimental timeframes compatible not only with the acquisition of singular proof-of-concept 
datasets but of controlled dataset cohorts like the one reported in this study. This technological capacity is already 
delivering novel insights on the function of biological soft tissues, led largely by the field of connectomics, focussed on 
the study of neuronal circuits. In mammals, neuronal circuits are embedded in volumes not smaller than 1 mm3 [34], and 
a whole mouse brain at connectomic resolution is regarded as a feasible aim within a decade [35, 36]. Processing the 
datasets that will be acquired in the upcoming years will necessarily require a robust data architecture that uses 
computational resources efficiently. This classifier ran at an average rate of 387 min per processed 0.1 mm3 (Table 1). We 
anticipate it being operative at this regime for up to 1 mm3 datasets. For larger volumes, there are opportunities for 
optimization, such as reducing scheduling overheads on the Slurm cluster and utilising GPUs for predictions. With these 
optimizations, we expect processing volumes of 10 mm³ (equivalent to the entire olfactory bulb of an adult mouse) to take 
a few days on a similarly equipped Slurm cluster.  

Exploring, annotating and proof-reading terabyte-scale datasets requires a data architecture that ensures robustness of the 
original dataset over long periods of time, that facilitates sharing and access by many users from diverse locations 
worldwide, that streams efficiently the data users require using the minimal bandwidth necessary, that integrates well with 
high-performance image analysis computational routines, and that relies on an open-access data format ensuring long-term 
support for both datasets and metadata. OME-Zarr has been suggested as the consensus data format that can meet all these 
requirements: this chunked data format allows any user to explore a petascale dataset from their browser, it is optimised 
for distributed computing routines addressed at high performance clusters and is open-source [37, 38]. We employed a 
Zarr-compatible dataset architecture, WEBKNOSSOS [39] to store, explore and annotate our datasets. We release all the 
densely annotated training data and tagged test data in this format, enabling us and others to develop more accurate 
segmentation algorithms in the future. 

Altogether, we have developed an image classifier that accurately segments nuclei in 3D mouse brain datasets obtained 
with X-ray holographic nanotomography. This classifier generalises well to other datasets of independently processed and 
imaged samples with minimal additional training data and operates natively on Zarr-compatible datasets stored in a 
WEBKNOSSOS architecture. It makes it an integral tool of a scalable image analysis pipeline for future datasets exploring 
mouse brain tissue with X-ray holographic nanotomography at the mm3 scale. This classifier will provide biologically 
relevant insights on terabyte-scale volume datasets mapping biological tissues early in the analytical pipeline, and it will 
pave the way to establish robust image segmentation solutions for even larger datasets.   

 

4. MATERIALS AND METHODS 
Animals 

Animals used in this study were 9-12 week old wildtype mice of C57Bl/6 background of either sex. All animal protocols 
were approved by the Ethics Committee of the board of the Francis Crick Institute and the United Kingdom Home Office 
under the Animals (Scientific Procedures) Act 1986. 
 

Sample preparation  

A detailed description of these samples and datasets will be published in a separate manuscript currently under preparation. 
Briefly, fresh tissue slices 0.5 mm thick, ~3*3 mm2 wide were dissected, fixed with paraformaldehyde and glutaraldehyde 
in ice-cold isotonic buffer (sodium cacodylate 0.15M, pH 7.40), stained with heavy metals following a ROTO protocol for 
volume electron microscopy, dehydrated and embedded in Epon812 or equivalent epoxy resin [26, 40, 41]. Samples were 
scanned with a Zeiss Versa 512 microCT to verify correct staining throughout and further imaged at propagation-based 
microtomography beamlines at Diamond I13-2 and PSI TOMCAT. These datasets guided the targeted trimming of the 
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parent specimen down to a <1mm diameter, <1mm height sample that contained all relevant tissue regions using either 
ultramicrotomy tools or a femtosecond laser [42].  
 

X-ray holographic nanotomography 

The X-ray holographic nanotomography datasets were acquired at the ID16A beamline of the European Synchrotron in 
Grenoble, France. The beam energy used was 17 keV for C432 and 33 keV for Y391 and Y489. C432 and Y391 were 
acquired at cryogenic conditions, with 300 ms exposure time per rotation angle as the sample rotated through 180° in 1600 
or 2000 steps, respectively. To reduce ring artefacts, the samples were displaced laterally with a random jitter at each 
rotation angle. Sample Y489 was acquired at room temperature with continuous scanning technique, where the sample 
rotated non-stop though 180° while 2000 projection images were taken with 150 ms exposure time per frame. Each sample 
location was imaged twice with a 5 μm displacement in x, y and z. This allowed a Noise2Noise [43] based denoising 
algorithm to be applied using a 3D U-Net architecture [29]. For tomogram reconstruction, for each angle, projections from 
all distances were first aligned then used to compute a phase map [14, 44, 45]. A 3D tomogram was then obtained by 
combining phase maps from all angles using filtered back-projection [46]. Each reconstructed tomogram had a high-
resolution core corresponding to the overlap in field of view of all distances ((200 μm)3) and a progressively lower 
resolution edge that extends to the full field of view ((321.6 μm)3). To cover all regions of interest, 28, 32 and 36 
overlapping tomograms were acquired, reconstructed and then stitched with NRstitcher [27] for datasets C432, Y391 and 
Y489, respectively. 
 

Instance segmentation workflow 

The segmentation pipeline is built with Voxelytics (scalable minds, Potsdam, Germany) and runs on Python 3.11 with 
PyTorch 2.1.1. 
 

Image annotation 

Subvolumes were defined as bounding boxes at specific locations in the dataset in WEBKNOSSOS. Each subvolume was 
then submitted as an individual task to an expert annotator (Mindy Support), only displaying data downscaled two-fold to 
(200 nm)3 voxels. Annotators were briefed to locate all nuclei in their assigned subvolumes with single-node skeletons, 
and to then complete full volume manual segmentation assigning each nucleus an independent segment identifier. It took 
on average 24 minutes to locate and manually segment each nucleus. Annotations in all subvolumes always retained the 
relationship to the original data (the volumes presented were a masked version of the original dataset and coordinates were 
always those of the whole dataset). 
 

Data preparation 

Classifier training required initial conversion of training data to uint8, i.e., constraining the range of voxel values to 0-255. 
The conversion started with clipping the input data to a narrower range (C432: [52562.20, 54917.48], Y489:  [-92.7594, 
70.8168]), followed by rescaling to the uint8 range. Then, we applied normalisation on the uint8 data (C432: mean 130.97, 
std: 53.75; Y489: mean: 102.15, std: 35.77). We split the annotated segmentation labels into patches of 76x76x72 voxels. 
The related input data patches had a size of 116x116x112 voxels to account for the context required by the U-Net. If the 
context lied outside of the data bounding box, it was filled with black voxels. We used a train:validation ratio of 80:20 and 
a batch size of 4. Data augmentation included random mirroring along any axis, random rotation by multiples of 90 degrees 
around the z axis, and adding noise with a randomly chosen standard deviation between 0 and !"

#$%$&'%	&%#
 . Further, we 

augmented brightness and contrast by histogram manipulation with a randomly chosen shifting delta between 0 and 
)"

#$%$&'%	&%#
	and a scaling factor that was restricted to the range of ±	2 ∗ 	𝑑𝑎𝑡𝑎𝑠𝑒𝑡	𝑠𝑡𝑑 and sampled from a lognormal 

distribution with standard deviation of 0.1 . 
 

For prediction on a complete dataset, we created a tissue mask beforehand, as a convex hull over a set of manually 
annotated polygon vertices, to avoid predicting noise in non-tissue areas. Voxels outside the mask were automatically 
classified as background. Contrary to training, prediction was not limited to uint8 data. Thus, we used the original data 
without uint8 conversion and normalised with dataset-specific mean and standard deviation (C432: mean 53739.84, std 
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588.81; Y391: mean: 42707.97, std: 709.68; Y489: mean: -30.04, std: 27.07). As the sizes of the datasets demand 
distributed processing, we conducted the prediction and subsequent segmentation in chunks.  
 

U-Net architecture and training 

Our U-Net classifier (Fig. 2c) is based on the 3D U-Net described in [29]. Each residual block consists of two 3x3x3 
convolutional layers with ReLU [47] activation. In the downsampling path, the number of features is increased by the 
second convolution of the residual block. We used 2x2x2 max pooling for the two downsampling steps. Our approach 
deviates from [29] by computing the respective two upsampling steps via 2x2x2 nearest-neighbour interpolation, by using 
a 1x1x1 convolution instead of transposed convolution, and by not using batch normalisation. A final 1x1x1 convolution 
layer per prediction task, namely binary semantic segmentation and distance regression, was added to produce a single-
channel output feature map. The resulting map of the semantic segmentation prediction contains logits which are converted 
by a subsequent sigmoid activation to obtain a map of voxel-wise nucleus probabilities. 
 

To take advantage of the spherical nature of nuclei, distance-based prediction approaches have been developed [48]. 
Following this idea, we trained the classifier to predict a distance map in addition to the probability prediction. We used a 
linear activation for the respective 1x1x1 convolution layer. The distance map contains the distance to the closest 
background voxel for every nucleus voxel and the negative distance to the closest nucleus voxel for every background 
voxel, clamped at ±4000nm. Thus, the predicted distance of 0 constitutes the border between nucleus and background. 
We adapted the training data labels by separating each pair of annotated segments with a thin border of background voxels 
and subsequently applying Euclidean distance transform. 
 

We used mean squared error loss on the distance map and unreduced binary cross-entropy loss combined with a sigmoid 
layer on the logits map. As background voxels are far more common than nuclei voxels, we applied class weights, inversely 
proportional to the class ratio and calculated over all training boxes, for the loss computation. The model’s weights were 
initialised with the Kaiming uniform initialization [49]. We used the Adam optimizer [50] with a learning rate of 0.0001. 
For the initial classifier on the C432 dataset, we ran training until convergence and therefore set a maximum of 40000 
epochs - i.e., iterations through the complete training dataset - with early stopping with a patience of 400 epochs. We found 
that the classifier converged after 342 epochs. Therefore, a smaller maximum epoch was used for the six classifiers trained 
on Y489. To enable comparison between those six classifiers, we trained each of them for a similar number of steps, thus 
adapting the maximum epoch inversely proportional to the amount of training data (0 boxes C432 + 29 boxes Y489: 770 
epochs, 30+5: 635 epochs, 30+11: 540 epochs, 30+17: 470 epochs, 30+23: 425 epochs, 30+29: 380 epochs). The training 
was conducted in a Slurm cluster on a GPU node using one NVIDIA V100 32GB GPGPU with NVLink and an Intel Xeon 
Gold 6148 CPU, running at 2.4GHz, hyperthreading enabled, up to 32 cores used and 50 GB RAM allocated. 
 

Segmenting the U-Net prediction 

In the previous step, the U-Net predicted a probability map and a distance map. We considered the distance map to be 
inherently more suitable for thresholding with focus on avoiding mergers. Moreover, we determined the distance prediction 
quality good enough to not require combining with the predicted probabilities. Therefore, we selected the distance 
prediction to proceed with the segmentation. 
 

The segmentation step is shown in Fig. 2c. We generated seeds by thresholding the prediction at a distance of 705.6 nm, 
slightly inside the predicted nuclei, to prevent merging nuclei that touch at their borders. Afterwards, we used a watershed 
algorithm [30] to grow out the segment instances until a distance of 0, i.e., the predicted border between nucleus and 
background. 
 

After obtaining the instance segmentation in chunks, we merged segments that touch at the chunk borders with an 
intersection over union score of at least 75% to avoid chunking-induced splits. 
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Segmentation post-processing 

We computed the segment volumes and center positions chunk-wise with subsequent aggregation. As positions are non-
aggregatable, we enlarged each chunk by 20µm at each side to enable determining the positions for segments spanning 
multiple chunks. Segment volumes were calculated via voxel counting, segment center positions via Euclidean distance 
transform.  
 

Mesh calculation 

Aside from the meshes for visualisations (see Rendered visualisations), we generated meshes within our post-processing 
procedure with the marching cubes algorithm [51]. The resulting meshes consisted of connected vertices and the enclosed 
triangular faces (Fig. 2g). We applied mesh simplification using an implementation of the quadric mesh reduction 
algorithm [52] from the Python package pyfqmr to reduce the number of triangles by a factor of 100 while restricting the 
simplification error to a maximum of 16000 nm. The meshes were computed and stored in chunks, merging was performed 
when loading a mesh. 
 

Sphericity 

We computed the surface in each mesh by summing up the areas of all the faces of the mesh. Then, for each mesh of a 
segmented object, we computed its sphericity - a metric of compactness, reporting the ratio of the surface-to-volume ratio 
of a 3D object to the one of a sphere of the same volume [28]. Accordingly, perfectly spherical objects will have a sphericity 
of 1, whereas highly eccentric objects will display sphericity values close to 0. Sphericity can be obtained from the 
particle’s volume and surface: 

𝑆𝑝ℎ𝑒𝑟𝑖𝑐𝑖𝑡𝑦 = 	𝜋
!
* 	 ∗ 	 (6	 ∗ 	𝑣𝑜𝑙𝑢𝑚𝑒)

+
* ∗ 	

1
𝑠𝑢𝑟𝑓𝑎𝑐𝑒 

Note that by generating meshes with our mesh calculation process, mesh vertices do not match exactly the borders of 
voxels. This mismatch leads to slight inaccuracies in the calculated sphericities because we computed the surface from the 
meshes and the volume as voxel count from the segments. However, those inaccuracies become only relevant for small 
(£3 voxels-wide) 3D features which can then generate artifactual sphericity values larger than 1. Since nuclei are expected 
to present overall round structures and their diameter (10 µm) is typically >100 times larger than the voxel size (100 nm), 
their characteristic sphericities can be reliably retrieved (Fig. 2h). 
 

To determine the volume and sphericity thresholds for C432 and Y391, we conducted 2-fold cross-validation over a set of 
12 subvolumes spanning the different histological regions. We obtained the thresholds via grid search over the volumes 
and sphericities of the detected objects and selected the combination that resulted in the best F1 score. We valued higher 
recall over higher precision. Thus, we restricted the recall computed over all training boxes combined to be at least 0.8. 
Further, we performed aggregation over the folds by selecting the minimum for each threshold. For Y489, we applied the 
thresholds computed on C432. 
 

Evaluation 

As described in (Sphericity), we calculated the thresholds for C432 and Y391 on 12 boxes. We further kept a held-out test 
set of 6 additional boxes. On Y489, we used 14 boxes for classifier selection and 6 boxes as test set. All boxes covered (50 
µm)3 and contained skeleton annotations of nuclei instances in the MCL, GL and EPL layer - three boxes in the centre and 
three boxes in the border region of each layer. For C432 and Y391, the boxes were evenly distributed among the cross-
validation folds and the test set, each containing one box per region and layer. The test set for Y489 followed the same 
principle, the classifier selection set contained two boxes per region and layer with addition of one box from a darker 
region of each the MCL and the GL layer. 
 

When calculating precision, recall, and F1 score per box, we aimed to minimise measurement artefacts due to nuclei being 
cut off at the box border. Therefore, we enlarged each box by 8µm in each direction beforehand, which was treated as a 
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tolerance margin that contained no ground truth annotations but predicted nuclei in the margin were not counted as false 
positives. The average precision and recall values in Table 1 reflect the average score across subvolumes (Fig. 3f,l,r). 
 

Rendered visualisations 

3D renders of datasets and nuclei were generated using SideFx Houdini 19.5.303 and Maxon Redshift 3.5.8. Datasets were 
exported at the relevant magnifications from WEBKNOSSOS using the webknossos Python API and imported into 
Houdini as image stacks, and geometry was masked using an exterior mesh generated in WEBKNOSSOS. Volume 
annotations of the segmented nuclei were read from the same location, including the unique identifier assigned to each 
segmented object. Segmented nuclei were converted to polygonal mesh using [53]. For each dataset, meshed nuclei with 
a volume larger than 10x the mean nuclear volume were considered data conversion artefacts and masked out. 
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