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Abstract. Glucose determination based on near-IR spectroscopy is in-
vestigated for reflectance and transmittance measurement. A wave-
length range is 1100 to 2500 nm, which includes both the combina-
tion and overtone bands of glucose absorption. Intralipid solutions are
used as samples, where glucose concentrations vary between 0 and
1000 mg/dl. Sample thickness for reflectance is 10 cm and 1- and
2-mm-thick samples are used for transmission. Partial least-squares
regression �PLSR� analyses are performed to predict glucose concen-
trations. The standard errors of calibration are comparable between
reflectance and 2-mm-thick transmittance. The reflectance method is
inferior to the transmittance method in terms of the standard errors of
prediction. Loading vector analysis for reflectance does not show glu-
cose absorption features. Reflected light may not have enough infor-
mation of glucose since a major portion of detected light has a short
optical path length. In addition, prediction becomes more dependent
on medium scattering rather than glucose, compared with transmis-
sion measurement. Loading vectors obtained from a PLSR transmit-
tance analysis have glucose absorption profiles. The 1-mm-thick
samples give better results than the 2-mm-thick samples for both cali-
bration and prediction models. The transmittance setup is recom-
mended for noninvasive glucose monitoring. © 2006 Society of Photo-Optical
Instrumentation Engineers. �DOI: 10.1117/1.2165572�
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1 Introduction

Diabetic patients are recommended to check their glucose
level several times a day, but drawing blood from a finger is
painful and there is potential contamination. Ease of use and
reduction of pain can encourage more frequent tests and it
becomes easier to control glucose level tightly. Near-infrared
�NIR� spectroscopy is considered as a promising noninvasive
glucose detection method since the NIR region contains the
overtone and combination bands of glucose absorption.

Unfortunately, glucose specificity is very low. The speci-
ficity is how well glucose is detected without detecting
closely related substances. NIR peaks are broad, unlike the
fundamental bands, and are overlapped with other blood com-
ponents. In addition, the normal concentration of blood glu-
cose is too low �74 to 110 mg/dl� compared with other blood
components such as hemoglobin �13 to 18 g/dl�, protein
�6.4 to 8.3 g/dl�, total cholesterol �130 to 240 mg/dl�, and
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others. Water, fat, skin, and muscle account for major absorp-
tion in biological tissue. In the IR, water is the most dominant
absorber and measured spectra are dominated by the water
spectrum. Glucose is responsible for less than 0.1% of NIR
absorption. In addition, NIR spectra depend on not only glu-
cose absorption but also light scattering properties of tissue.
Water-soluble compounds, different cell sizes, and internal in-
homogeneous structures influence scattering properties. The
scattering property of a sample is determined by the concen-
tration of scatterers and by the difference of the refractive
indices between scatterers and medium.

Multivariate statistical analysis such as the partial least
squares regression �PLSR� has been used as an effective tool
for computing glucose concentration from measured spectra.1

Preprocessing of measured spectra and the selection of wave-
length regions were reported to also be important issues.2,3

Biological tissue is dominated by light scattering, which fur-
ther complicates the problem. Not only glucose absorption but
also scattering due to glucose molecules changes measured
spectra. It has been reported that spectral changes caused by
1083-3668/2006/11�1�/014022/7/$22.00 © 2006 SPIE
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glucose are larger than those caused by absorption.4 It was
proposed that a proper distance between the light source and
detector could minimize the effect of medium scattering.5 One
must think about which part of the body is used as a spot for

Fig. 1 Schematics for diffuse �a� reflectance and �b� transmittance
measurement.

Fig. 2 Comparison between biological tissues and intralipid solutions:
�a� reflectance from human forearm and the solutions of different in-
tralipid concentration and �b� transmittance of biological tissues and

intralipid solutions.
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light illumination and detection, and there have been studies
comparing different parts of the human body as measurement
sites.6,7

Diffuse reflectance spectroscopy has been used widely in
research and in attempts to commercialize noninvasive glu-
cose monitoring.8–11 In this paper, we investigate glucose pre-
diction using reflectance and transmittance measurement set-
ups. We prepared tissue phantoms that had scattering
coefficients comparable to those of biological tissue. Small
changes in the scattering of the samples were introduced to
study the influence of scattering. Measurements were made
between 1100 and 2500 nm, which includes both the overtone
and combination absorption bands of glucose. Analysis was
performed using PLSR.

2 Materials and Methods
To simulate biological tissue scattering, we chose intralipid as
scatterers. Spectra were measured with a Foss™ NIR 6500
system between 1100 and 2500 nm with 2-nm steps �Fig. 1�.
The light source was a tungsten halogen lamp, and a PbS
detector was used. The active area of detector was 1
�1 cm2. One detector was used for transmittance measure-
ment and four detectors were employed for reflectance mea-
surement. One scan time was 1 s and the 32 scan data were
averaged to produce a spectrum. The system SNR of the mea-
sured spectrum was 10−5 absorbance, which was computed
from two consecutively acquired spectra. We measured reflec-
tance and transmittance of biological tissues and intralipid
solutions to select a proper concentration of intralipid �Fig. 2�.

Figure 2�a� shows reflectance measurements from 1 to
10% intralipid samples. We acquired diffuse reflectance from
a 10-mm-thick cell for convenience, since reflectance spectra
did not change for samples thicker than 2 mm. Figure 2�a�
also contains reflectance spectra of the human body measured
on the inner forearm. We put cosmetic oil on the skin to
minimize the surface roughness and to ensure a close contact
without an air gap between the skin and the detector window.
Cosmetic oil, which is transparent at 1100 to 2500 nm, pro-
duced spectra of high repeatability. Reflectance from the hu-

Fig. 3 Analysis of diffuse reflectance measurement in terms of the
regression vector of the calibration model between 1100 and
2500 nm.
man forearm is similar to that of a 4% intralipid sample, as
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shown in Fig. 2�a�. Figure 2�b� shows diffuse transmittance
measurements from various samples. Intralipid samples had
concentrations of 1 to 10%. Tissue samples were chicken
breast, cow muscle, and pig muscle. The sample thickness
was set to 2 mm for transmittance measurement. A solution of
4% intralipid was similar to biological tissue even though
there were some differences at the combination band due to
protein absorption. We chose 4% intralipid solutions as a tis-
sue phantom.

Biological tissue is inhomogeneous and shows variations
of scattering coefficients, depending on the samples. There-
fore, we prepared samples with slight variations of intralipid
concentrations to simulate tissue scattering variations. A 1.1%
decrease of scattering coefficient was induced12 by an increase
of 1000 mg/dl glucose concentration at 1000 nm. Intralipid
concentrations of 4, 4.08, and 4.16% were used as sample

Fig. 4 Analysis for diffuse reflectance measurement between 1100 and
vector of calibration model, �c� regression vector of calibration mode
of sample solutions.
1850 nm: �a� SECV with respect to the optimal number of factor, �b� loading
l, and �d� prediction of glucose illustrated with the intralipid concentrations
media. Seven levels of glucose concentrations ranging from
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Fig. 5 Prediction results of reflectance measurement with the offset of

medium scattering corrected.
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Table 1 Calibration and prediction models in predicting glucose compared for the reflectance and transmittance methods.

Wavelength
Region
�nm�

Calibration Prediction

SECV �mg/dl� Rval SEC �mg/dl�
Number
of Factor SEP �mg/dl� Rpred Slope

Diffuse reflectance �10-mm-thick sample� 1100–2500 69.58 0.98 27.38 9 275.44 0.80 0.74

1100–1850 33.51 1.00 15.91 8 437.54 0.98 0.89

1850–2500 108.04 0.95 30.57 8 192.00 0.88 0.69

Diffuse transmittance �1-mm-thick sample�
1100–1800
2064–2338 38.29 0.99 3.22 9 24.69 1.00 1.01

1100–1800 33.99 1.00 2.88 7 26.77 1.00 1.01

2064–2338 13.90 1.00 4.50 8 43.51 1.00 1.03

Diffuse transmittance �2-mm-thick sample�
1100–1830
2050–2392 54.67 0.99 26.46 7 39.07 1.00 0.92

1100–1830 62.73 0.98 40.47 7 83.58 0.99 0.95

2050–2392 74.54 0.98 27.39 8 94.76 0.97 0.88
Fig. 6 Analysis for diffuse transmittance with 1-mm-thick samples: �a� SECV with respect to the optimal number of factor, �b� loading vector of

calibration model, �c� regression vector of calibration model, and �d� prediction of glucose concentrations.
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0 to 1000 mg/dl were prepared. Three samples were made
for each glucose concentration to include the effect of sample-
to-sample variations. A total 63 samples were prepared �7
glucose levels �3 intralipid concentrations �3 sample per
each condition�. The sample temperature was controlled at
30°C. We measured the spectrum of each sample in random
order. Chemometric analysis was carried out using a Pirou-
ette™ 3.0 �Infometrix, Woodinville, Washington, U.S.A�.

3 Results and Discussion
Measured NIR spectra include information of not only glu-
cose but also other components and are also affected by other
phenomena such as scattering and system noise. A key objec-
tive of statistical analysis is to decrease the prediction error by
minimizing spectral variation caused by anything other than
glucose. Measured raw spectra were preprocessed for this pur-
pose before the PLSR analysis. We used the multiplicative

Fig. 7 Analysis for diffuse transmittance with 2-mm-thick samples: �a
calibration model, �c� regression vector of calibration model, and �d�
scatter correction �MSC� as data preprocessing to correct for
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medium scattering. MSC assumes that the original signal can
be recovered by the elimination of additive noise and multi-
plicative noise. The parameters are extracted from a linear
regression of the ideal spectrum, and the original spectrum is
reconstructed. The ideal spectrum is often simply the mean of
the included spectra. We used the average spectra as the ideal
MSC spectrum. Defining the mean spectrum as the ideal is
sometimes regarded as a disadvantage of MSC. Although
MSC may not be perfect in correcting multiple scattering, it is
regarded as a better choice than other preprocessing methods.

The calibration model was constructed using PLSR mod-
els. For quantitative analysis of NIR spectra, full-frequency-
range spectra are often used in conjunction with PLSR or
principal component regression �PCR�. NIR spectroscopy
does not show individual vibration absorption since overlap-
ping of absorption peaks of components results in relatively
broad absorption bands. PLSR uses the concentration infor-

with respect to the optimal number of factor, �b� loading vector of
tion of glucose concentrations.
� SECV
predic
mation during the decomposition process. This results in spec-
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tra containing higher constituent concentrations that are more
weighted than those with low concentrations. Thus, the eigen-
vectors and scores computed from PLSR analysis are different
from those of PCR. The loading vectors of PLSR are directly
related to the constituents of interest. Therefore, we used the
loading vector to correlate with glucose information.

To choose optimal wavelength bands, we avoided the re-
gions of high noise-to-signal ratio bands and water absorption
bands, including the 1440- and 1940-nm regions. We com-
pared accuracies at three wavelength regions. They were the
overtone �1100 to 1850 nm� and combination
�2050 to 2392 nm� bands of glucose and the entire region of
1100 to 2500 nm. The overtone band contains an absorption
peak at 1688 nm originated 2� of —CH, and the combination
band has absorption peaks at 2261 and 2326 nm that are the
combinations of a CH stretch and a CCH, OCH deformation,
respectively.13

The calibration and prediction results were analyzed in
terms of the standard error of cross validation �SECV�, stan-
dard error of calibration �SEC�, standard error of prediction
�SEP�, and regression coefficient of prediction �Rpred�. On day
1, 21 samples of 7 glucose levels and 3 intralipid concentra-
tions were made and their reflectance and transmittance spec-
tra were measured. After 1 week from the first experiment,
another 21 samples were made and their spectra were mea-
sured. After 2 weeks, the same procedure was repeated again.
By doing this, the influences of day-to-day variations of spec-
tral measurement as well as sample-to-sample variations were
included. A total of 63 data were obtained for either reflec-
tance or transmittance measurements. Two thirds of the total
data were used as a calibration set and the remaining 21 data
were used as a prediction set.

Table 1 summarizes the calibration and prediction results.
Obviously SECs, compared with SECVs and SEPs, were the
smallest with values between 3 and 40 mg/dl, depending on
the wavelength regions. SECs were comparable to each other
for the reflectance and transmittance with a 2-mm-thick
sample. As expected, SECVs were longer than SECs, and
SEPs were the largest. It is also obvious that SEPs should be
used in discussing prediction accuracy rather than SECs or
SECVs.

3.1 Diffuse Reflectance
For reflectance, SECV at the overtone band of
1100 to 1850 nm was better than other bands, and SEPs
�437.5 mg/dl� were very large, but the regression coefficient
�0.89� was acceptable �Table 1�. SECs and SECVs were
poorer at the combination band, which was unexpected since
glucose absorption is much stronger at the combination band
than at the overtone band. This was verified by regression
vector analysis. Figure 3 shows regression vectors between
1100 and 2500 nm. Regression vectors were very noisy be-
tween 2200 and 2500 nm, which contains the combination
band. Overall, the SEPs for reflectance measurement were too
large to be used. Noisy regression spectral regions should be
excluded for the stability of the calibration model.14 This in-
dicates that the calibration model does not contain reliable
glucose absorption information. The result of calibration and

prediction was the best in the overtone band �Table 1�, so our
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study was focused on the overtone band in the reflection
setup.

Further analysis on reflectance measurement in the over-
tone band was performed and the results are illustrated in Fig.
4. The optimal number of factors was eight from the F test, as
in Fig. 4�a�. The first loading vector shown as factor 1 in Fig.
4�b� was similar to a profile of the intralipid spectra. The
regression vector of the calibration model is given in Fig. 4�c�
and did not represent glucose absorption shape. The regres-
sion spectrum was very noisy in the overtone region. It ap-
pears that reflected light does not contain enough information
on glucose absorption since the major portion of detected
light is contributed by superficial layers. The mean path
length of diffuse reflected light in the overtone region is as
short as 0.25 mm when it is calculated with optical
properties15,16 of �a=5.75 cm−1 and �s�=8.31 cm−1.

In addition, scattering changes due to not only glucose
concentrations but also medium scattering might be influential
factors in the reflectance regression model. This was proved
by the observations in Fig. 4�d� that the calibration model
gave the predicted values dependent on intralipid concentra-
tions. In fact, SECVs and SEPs were very large for our case
of reflectance measurement. Samples having different scatter-
ing backgrounds of 4, 4.08, and 4.16% intralipid concentra-
tions might have contributed seemingly large values of
SECVs and SEPs.

The prediction results are shown in Fig. 4�d�. Large offset
values appeared between the predicted values �in the dots�
and reference values �in the line�. The offset increased as the
intralipid concentration increased from 4 to 4.16%. This indi-
cates that the calibration model can have offsets induced by
medium scattering and possibly by water displacement in the
cell experiment. For an in vivo experiment, each measurement
site has a different degree of scattering that may cause an
offset in the predicted value. When the offset of each medium
scattering was corrected by subtracting the predicted glucose
concentration at 0 mg/dl of each scattering background, the
prediction error was improved significantly, as given in Fig. 5.
The SEP was 438 mg/dl and the offset-corrected SEP could
be reduced to 61.4 mg/dl with a mean absolute error �MAE�

Fig. 8 Water-subtracted glucose spectrum. The glucose concentration
is 5 g/dl.
of 13.9%.
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3.2 Diffuse Transmittance
For the case of transmittance, using the entire spectrum of
1100 to 2400 nm produced the smallest errors �Table 1�. Fig-
ures 6 and 7 display the results of transmittance measure-
ments for 1- and 2-mm-thick samples, respectively. SECVs
and SEPs for 1 mm thick sample were better than those for
2 mm sample. It appears to be related with the system S/N.
Light penetration especially at the combination band is short.
When a sample is thicker, light travels more and interacts
more with the medium. However, the signal becomes weaker.
Only about 0.1�1% of light passes through a 2-mm sample
at the combination band �see Fig. 2�b��. The first loading vec-
tor noted as factor 1 had usually a mean-centered profile of
sample spectrum. Higher order loading vectors �for example
factor 4 in Fig. 6�b� and factor 3 in Fig. 7�b�� were similar to
absorption spectra of water-subtracted glucose solution.
Water-subtracted glucose spectrum is shown in Fig. 8. In Fig.
6�b� and Fig. 7�b�, glucose peaks at the regions of 2120 nm,
2274 nm, and 2330 nm could be observed. The regression
vectors showed that there was glucose absorption information
as you can see in Fig. 6�c� and Fig. 7�c�. The prediction re-
sults gave less offset or a dependency on the scatterers’ con-
centration as depicted in Fig. 6�d� and Fig. 7�d�.

4 Summary and Conclusion
We examined whether there was indeed glucose-related ab-
sorption information in the NIR spectroscopic method. Two
different setups of reflectance and transmittance measure-
ments were investigated. Intralipid solutions were used to
simulate tissue scattering. We introduced the variations of
scattering concentrations in the medium so that the influence
of scattering background was studied during the prediction of
glucose concentrations. Transmittance proved to be better
than reflectance in terms of SECs and SEPs. Loading vectors
and regression vectors calculated during PLSR models had
spectral profiles of glucose-related information in the trans-
mittance measurement. For the reflectance measurement, it
was difficult to find glucose-related spectral profiles in the
loading and regression vectors. For transmittance for all SEPs,
SECVs, and SEPs, the thinner the sample thickness, the better
were the results. From our investigation, we suggest that the

transmittance setup is preferred for glucose monitoring.
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