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Abstract. We design a distributed situational observer using formation flying in a displaced orbit. The main
focus of our investigation is the relative dynamics and control of displaced orbits obtained by low-thrust propul-
sion. The spatial dynamics in Newtonian form are used to derive the numerical relative motions, and their natural
frequencies discovered by eigenvalue decomposition separate from each other at a critical height that differ-
entiates the structural stability, bifurcation, and instability. Using the Jordan decomposition, six fundamental
motions are achieved, including the stationary multiequilibria, the periodic oscillations that correspond to the
natural frequencies, and the maximum leaving or approaching velocity caused by the different geometric
and algebraic multiplicities. Off-axis equilibrium is obtained by a proposed open-loop control, and the motions
nearby are proven to be equivalent to the numerical relative motions. The reduced dynamics in Hamiltonian form
are used to derive the analytical solutions for linearized relative motions. Bounded relative trajectories with arbi-
trary initial values are achieved by two extraclosed-loop controls. Using the off-axis equilibrium and resonance of
natural frequencies, the applications of a fixed relative baseline vector for interferometric SAR or Fresnel zone
lens missions and repeating relative ground tracks for a phased array antenna mission are addressed in terms of
the trajectory design. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or repro-
duction of this work in whole or in part requires full attribution of the original publication, including its DOI. [DOI: 10.1117/1.JATIS.4.4.045001]
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1 Introduction
Large families of displaced orbits have been identified by solar
sail or electric propulsion thrusters in the context of the non-
Keplerian two-body problem including three types of circular
orbits by propulsive acceleration,1–3 quasiperiodic displaced tra-
jectories by a fixed thrust along the rotation axis of a planet,4

body-fixed hovering orbits by open-loop control,5 elliptic dis-
placed orbits with an advanced thrust model,6 a sequence of
individual Keplerian arcs connected by slight impulse propul-
sion,7 and a displaced geostationary orbit (GEO) using hybrid
sail propulsion.8 A large catalog of these orbits was provided by
McKay et al.9 for motions around planetary bodies. The use of
continuous low-thrust propulsion to generate artificial equilibria
or displaced orbits above a planet has potential applications in
astronomical missions, such as observing Saturn’s rings in situ,
monitoring solar wind, and hovering above dangerous asteroids.
An interesting mission scenario involving displaced orbits is
offered by a concept for an Earth–Mars interplanetary commu-
nications relay,10 which supports a future manned mission
toward Mars and accomplishes both real-time observation and
telecommunication tasks.

Some sensing measurement applications for displaced orbits
require very long or distributed baselines, which are beyond the
capability of a single spacecraft. Fractionated architectures offer
a possible solution to this problem by employing multiple sat-
ellites that operate in proximity of each other (i.e., formation
flying). The topic of formation flying on a Keplerian orbit
has been widely investigated in previous years, and plentiful
results were summarized by Alfriend et al.11 However, less

attention was paid to the formation flying of a displaced
orbit. Biggs and McInnes12 considered formation flying in
a solar-sail elliptical restricted three-body problem and identi-
fied a family of 1-year periodic orbits in which each orbit cor-
responds to a unique solar sail orientation using a numerical
continuation method. However, they did not address the relative
dynamics of displaced orbits. Gong et al.13 investigated the
solar-sail-propelled formation flying around heliocentric dis-
placed orbits as well as the formation around planetary displaced
orbits for geocentric and Martian cases.14 The relative motion
was formulized by the simple variational equation of two-
body dynamics and the focus of investigation is on the analysis
of the stable region and control laws. Although the same as this
paper is that the relative dynamics is linearized, neither Ref. 13
nor Ref. 14 gave a linear analytical solution and dealt with the
practical applications of solar-sail formations. McInnes7 linear-
ized the relative motion in a rotating frame of reference and
obtained analytical solutions, but no propulsive acceleration
was included. Wang et al.15 worked on the relative motions
between the two heliocentric circular displaced orbits by defin-
ing a set of displaced orbital elements and obtained a semian-
alytical approximation of bounds of relative distance. Later, they
generalized the theory and methodology to the elliptic orbits in
Ref. 16, and further extended the analysis to avoid failure by
eliminating the singularities of classical orbital elements.17

However, the methodologies of Wang15–17 apply only to the
formation around periodic displaced orbits, not to quasiperiodic
orbits. In addition, Wang et al. succeeded in predicting the inner
and outer bounds of relative motion, but they did not consider
the spacecraft proximity operations and control strategies, which
are illuminated in this paper.

To design the distributed situational observer, the formation
flying and operation in proximity of a displaced orbit are*Address all correspondence to: Ming Xu, E-mail: xuming@buaa.edu.cn
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investigated in this paper, and the linearized relative motions
around a displaced circular orbit are derived. First, the spatial
dynamics in Newtonian form are used to derive the numerical
relative motions. The natural frequencies are solved by eigen-
value decomposition, and the six fundamental motions are
classified by the Jordan decomposition, including the stationary
multiequilibria, the periodic oscillations that correspond to the
natural frequencies, and the maximum leaving or approaching
velocity. Second, an extra open-loop control is proposed to
achieve off-axis equilibrium, and the nearby motions are proved
to be equivalent to the numerical relative motions. Third, the
reduced dynamics in Hamiltonian form are utilized to derive
the analytical solutions for relative motions, and two extrac-
losed-loop controls are developed to yield bounded relative tra-
jectories regardless of the initial values for all displaced height
cases. Finally, the applications of relative motions around dis-
placed orbits are addressed for the fixed relative baseline vector
for interferometric synthetic aperture radar (InSAR) or Fresnel
zone lens missions and repeating relative ground tracks for
a phased array antenna mission.

2 Dynamics of a Displaced Circular Orbit
Maintained by a Low-Thrust Propulsion
System

A displaced orbit relies on the low-thrust propulsion system to
hover above the Earth at a certain height during the lifetime of a
spacecraft. The dynamics of the chief spacecraft (denoted by
chief in the following sections) with the propulsive acceleration
can be written both in the Earth-centered inertial frame
Iðxi; yi; ziÞ and cylindrical coordinate frame Cðρ; h;ϕÞ. In the
former frame, the displaced dynamics is treated as a three
degree-of-freedom (DOF) system, but in the latter frame, it is
two and one-half DOF. Therefore, to differentiate, the dynamics
modeled in the ðx; y; zÞ space is referred to as the spatial dynam-
ics, whereas in the ðρ; h;ϕÞ space referred to as the reduced
dynamics.

2.1 Spatial Dynamics of a Displaced Circular Orbit
Maintained by Low-Thrust Propulsion System

The standard dynamics of the chief spacecraft (denoted by chief
in the following sections) with the propulsive acceleration can
be written in the Earth-centered inertial frame Iðxi; yi; ziÞ as

EQ-TARGET;temp:intralink-;e001;326;690r̈i ¼ −∇iU þ ai; (1)

where ri is the position vector from the spacecraft to the inertial
frame origin, i.e., the center of the Earth, ai is the propulsive
acceleration in the Earth-centered inertial frame, and U is the
gravitational potential U ¼ −μ∕krik, where μ is the gravita-
tional parameter of the Earth and the gradient operator in the
frame is ∇i ¼ ½ ∂

∂xi
∂
∂yi

∂
∂zi �T .

Another frame, which is named the first orbital frame
Oðxo; yo; zoÞ, is defined as follows and shown in Fig. 1: the ori-
gin is the spacecraft, the xo axis points along the direction from
the Earth to spacecraft, the zo axis is located inside the plane
formed by the xo- and the zi-axes perpendicular to the xo axis,
and the yo axis can be determined by the right-hand rule.
The angle between the xo axis and zi axis is defined as θ,
and the angle between the xi axis and the ðxo; zoÞ plane is
defined as ϕ. For the circular displaced orbit case, the yo axis
points along the velocity direction of the chief, θ remains invari-
ant, and ϕ is linear with the time according to ϕ ¼ ωt, where
ω is the angular velocity of the displaced circular orbit and t is
the flying time.

To maintain a displaced circular orbit, there must be a con-
stant propulsive acceleration with a fixed direction in the ðρ; hÞ
plane or ðxo; zoÞ plane whose magnitude a and direction angle α
with respect to the zi axis are achieved as3

EQ-TARGET;temp:intralink-;e002;326;406aðρ; h;ωÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2ðω2 − ω2�Þ2 þ h2ω4�

q
; (2)

EQ-TARGET;temp:intralink-;e003;326;368 tan αðρ; h;ωÞ ¼ ρ

h

�
1 −

�
ω

ω�

�
2
�
; (3)

r
r
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Fig. 1 Geometry of displaced circular orbit: E denotes the Earth, and S denotes spacecraft; E -xi y i zi is
the Earth-centered inertial frame I, S-xoyozo is the spacecraft-centered orbital frameO, and S-xo2yo2zo2
is the spacecraft-centered second orbital frame O2.
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where ω� is the orbital angular velocity of a circular Keplerian
orbit with a radius equal to the radius of the displaced orbit, i.e.,

ω� ¼
ffiffiffiffiffiffiffiffiffiffi
μ∕r3

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ∕ðρ2 þ h2Þ32

q
. Thus, the propulsive accelera-

tion ao in the O frame is derived as

EQ-TARGET;temp:intralink-;e004;63;701ao ¼ a½ cosðθ − αÞ 0 sinðθ − αÞ �T: (4)

As ω is constant, the yo component of ao must be zero, and
the ao direction can be described by the pitch angle (θ − α).

2.2 Reduced Dynamics of a Displaced Circular
Orbit Maintained by Low-Thrust Propulsion
System

Using the Hamiltonian method, the reduced dynamics of
the chief in the ðρ; h;ϕÞ space can be derived as18

EQ-TARGET;temp:intralink-;e005;63;573

(
ρ̈ ¼ h2z

ρ3
− μ ρ

r3 þ a sin α

ḧ ¼ −μ h
r3 þ a cos α

; (5)

EQ-TARGET;temp:intralink-;e006;63;523ϕ̈ ¼ −
2_ρ _ϕ

ρ
; (6)

where hz ¼ ρ2 _ϕ is the constant angular momentum directed
along the zi or zo axis, which can be yielded from Eq. (6),
ρ is the orbital radius projected on the ðxi; yiÞ plane and h is
the coordinate component on the zi axis, r is the distance
between the chief spacecraft and the Earth, r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ h2

p
.

The potential energy can be written as

EQ-TARGET;temp:intralink-;e007;63;416U ¼ −μ∕r − a cos α · h − a sin α · ρ: (7)

The propulsive acceleration in the ðρ; hÞ space, i.e.,
a ¼ a½sin α; cos α�T in Eq. (5), is independent of time but
dependent on the position components ρ and h. Thus, a
closed-loop control strategy19 of low thrust with the feedback of
ρ and h can be considered, and all the trajectories discussed in
this paper are generated by the same strategy, which is referred
to as basic propulsive acceleration (BPA) in the following
sections.

This system has two equilibria: the first equilibrium is the
elliptic (stable) topological type, and the second equilibrium is
hyperbolic (unstable).4 The stable equilibrium point is mapped
onto the displaced circular orbit adopted by the chief, and the
bounded trajectories are mapped onto the quasiperiodic dis-
placed orbits adopted by the follower.

The reduced dynamics present a simple understanding of the
motions in the ðρ; hÞ space; however, the ϕ component remains
ambiguous. Even though the natural boundedness on the ρ and h
components can help the follower maintain bounded relative
motions to the chief, the unsuited ϕ component will drive it
away from the chief. To solve this problem, the linearized
motion derived from the spatial dynamics is analyzed in the
next section to design the bounded relative trajectories.

3 Linearized Relative Motions in a Displaced
Circular Orbit Derived from Spatial
Dynamics

3.1 Linearized Relative Motions Derived from
Spatial Dynamics

The coordinate transformation matrix from the O frame to
the I frame is given as

EQ-TARGET;temp:intralink-;e008;326;656Fðθ;ϕÞ ¼ Rzð−ϕÞRy

�
π

2
− θ

�
; (8)

where Ry and Rz are the fundamental transformation matrixes
along the y and z-axes. The gradient operator in the O frame
is ∇ ¼ ½ ∂

∂r
1
r
∂
∂θ

1
r sin θ

∂
∂φ �T . The relative position vector of

the follower to the chief in the I frame is denoted by Δri,
and that in the O frame is denoted by Δro ¼ ½xo; yo; zo�T ;
then, the relationship between them is differentiated as
Δri ¼ F · Δro, which yields

EQ-TARGET;temp:intralink-;e009;326;531Δr̈i ¼ F · Δr̈o þ 2 _F · Δ_ro þ F̈ · Δro: (9)

The gravitational potential function of the follower is

EQ-TARGET;temp:intralink-;e010;326;487UF ¼ −
μffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðrþ xoÞ2 þ y2o þ z2o
p ; (10)

UF will degenerate into the chief’s potential function when
Δro ¼ ½0;0; 0�T , i.e., UC ¼ UFjðx;y;zÞ¼ð0;0;0Þ.

Compared with the only BPA denoted aC of the chief,
the propulsive acceleration imposed on the follower includes
the BPA denoted aF and the extra BPA denoted ui in the I
frame and uo in the O frame. In the inertial frame, the relative
dynamics can be written as Δr̈i ¼ −∇UF þ ∇UC þ Δai þ ui,
where Δai is the difference between the BPA of the chief aC

and the BPA of the follower aF, which can be simplified by
the Taylor linearization as
EQ-TARGET;temp:intralink-;e011;326;336

Δr̈i ¼ −∇ðUF − UCÞ þ Δai þ ui

¼ −∇ð∇ΔroU
FjΔro¼0 · ΔroÞ þ Δai þ ui

¼ −F · ð∇ · ∇ΔroÞUFjΔro¼0 · Δro þ Δai þ ui; (11)

where the linear operator ∇Δr is defined as ∇Δro ¼½ ∂
∂x

∂
∂y

∂
∂z �T . Combined with Eq. (9), the linear operators ∇

and ∇Δr can exchange their operating turns to yield
EQ-TARGET;temp:intralink-;e012;326;235

Δr̈o þ 2F−1 _FΔ_ro þ F−1F̈Δro þ ð∇Δro · ∇ÞUFjΔro¼0 · Δro
¼ Δao þ uo: (12)

Here, aC and aF have the same form of ½cosðθ − αÞ; 0;
sinðθ − αÞ�T in the chief’s orbital frames and follower’s orbital
frames, respectively, and the relative BPA is written as
EQ-TARGET;temp:intralink-;e013;326;151

Δao ¼ ½F−1ðθ;ϕFÞ · Fðθ;ϕCÞ − I�
· ½ a cosðθ − αÞ 0 a sinðθ − αÞ �T

¼ ½ 0 −a · sin α · Δϕ 0 �T; (13)

where Δϕ ¼ ϕF − ϕC is derived from the relative position
between the chief and follower, Δro ¼ ½xo; yo; zo�T .
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According to the definition of ϕ in Eqs. (5) and (6), i.e.,
tan ϕC ¼ ρ sin ϕC∕ρ cos ϕC, and the relative geometry shown
in Fig. 2

EQ-TARGET;temp:intralink-;e014;63;221 tan ϕF ¼ ρ sin ϕCþðxo sin θ− zo cos θÞsin ϕFþ yo cos ϕF

ρ cos ϕCþðxo sin θ− zo cos θÞcos ϕF − yo sin ϕF ;

(14)

EQ-TARGET;temp:intralink-;e015;63;163Δρ ¼ x0 sin θ − z0 cos θ; yo ¼ ρ · Δϕ: (15)

Combining Eqs. (8), (12), (13), and (15) yields the linearized
relative motion as

EQ-TARGET;temp:intralink-;e016;63;115Δr̈o þ AΔ_ro þ BΔro ¼ uo; (16)

where

EQ-TARGET;temp:intralink-;e017;326;752

A ¼ −2ω

2
64

0 sin θ 0

− sin θ 0 cos θ

0 − cos θ 0

3
75;

B ¼ ω2

2
64

−sin2θ 0 sin θ cos θ

0 −1 0

sin θ cos θ 0 −cos2 θ

3
75

þ ω2�

2
64
−2 0 0

0 1 0

0 0 1

3
75þ sin α · a

ρ

2
64
0 0 0

0 −1 0

0 0 0

3
75: (17)

For a Keplerian circular orbit, when the displaced height h
degenerates into zero, θ becomes π∕2, and Eq. (16) degenerates
into the classic Clohessy–Wiltshire (C-W) equation.

The second orbital frame O2ðxo2; yo2; zo2Þ is introduced with
the xo2 axis pointing along the ρ direction, the zo2 axis pointing
along the zi direction, and the yo2 axis following the right-hand
rule. The frameO2 is formed through rotating frameO by π∕2 −
θ counterclockwise around the yo axis, thus, the relative position
vector Δr ¼ ½x; y; z�T in the O2 frame can be achieved from
Δr ¼ Ryðπ∕2 − θÞ · Δro. Then, the linearized relative motion
can be transformed as

EQ-TARGET;temp:intralink-;e018;326;481Δr̈þ ÃΔ_rþ B̃Δr ¼ u; (18)

where
EQ-TARGET;temp:intralink-;e019;326;434

Ã ¼ ω

2
64
0 −2 0

2 0 0

0 0 0

3
75;

B̃ ¼ ω2

2
64
−1 0 0

0 −1 0

0 0 0

3
75

þ ω2�

2
64

1 − 3 sin2 θ 0 −3 sin θ cos θ

0 1 0

−3 sin θ cos θ 0 1 − 3 cos2 θ

3
75

þ sin α · a
ρ

2
64
0 0 0

0 −1 0

0 0 0

3
75: (19)

Analytical solutions are difficult to obtain for both Eqs. (16)
and (18) due to the nonzero θ. The following numerical imple-
mentations are used to verify the linearized relative motions
compared with the nonlinear chief’s dynamics subtracted from
the follower’s dynamics.

For a scenario consisting of a displaced orbit above the GEO
at a height h ¼ 150 km having the radius of circular orbit ρ ¼
rGEO ¼ 42;164.1696 km and the angular velocity of ω ¼ ωGEO,
both the linearized relative motions and nonlinear relative
motions are propagated from the initial condition as
Δx ¼ Δy ¼ Δz ¼ 100 m, Δ_x ¼ Δ_y ¼ 0, and Δ_z ¼ 1 m∕s in
the O2 frame, as shown in Fig. 3. The linearized equation
derived in this section coincides with the nonlinear equation,
and the maximum relative error (MRE) in the along-track
direction is 2.25% during 10 orbital periods. The accuracy of

Fig. 2 Relative geometry between the chief and follower: (a) the rela-
tionship among Δρ, xo , and zo in the x -zi plane (the x axis is defined
in the following O2 frame); (b) the relationship between Δϕ and yo in
the x i -y i plane.
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the linearized equation is evaluated by comparison with the
MRE of C-W equations for formation around Keplerian orbits.
When the displaced height is 0, the linearized equations
derived in this section degenerate to the C-W equations,
whose MRE in the along-track direction is 2.22%. Since the
accuracy of relative motions described by C-W equations is
accepted generally, the linearized equations in this section
whose MRE is the same order as errors of C-W equations
are accurate enough to model the nonlinear relative motions
in the following sections. Furthermore, this accuracy is
checked for many different displaced heights in Fig. 3(c).
Even if a more accurate result is required, the linearized equa-
tions can serve as a very good initial value for a developed
iteration algorithm.

3.2 Solutions of Linearized Relative Motions
Derived from Spatial Dynamics

In contrast to the classic C-W equation modeled on Keplerian
circular orbits, the linearized Eqs. (16) and (18) are difficult
to solve analytically. Thus, the natural properties of their solu-
tions will be discussed in this section by matrix decomposition
methods.

The eigenvalue decomposition method is used to investigate
the natural frequencies in Eq. (16) or Eq. (18). Taking the
displaced GEO (ρ ¼ rGEO, ω ¼ ωGEO) e.g., the eigenvalues of
linearized equation are characterized by the height h. Here,
the value of h is traversed from 0 to 60,000 km with the step
size of 100 km to investigate the evolutions of the eigenvalues.
It is found that there exists a critical value of h, i.e.,
hcri ¼ 18;700 km, which can classify the different eigenvalue
spectrum. When the height is less than hcri ¼ 18;700 km, the
eigenvalue spectrum consists of a pair of zero eigenvalues
and two pairs of conjugate imaginary eigenvalues, i.e., 0, 0,
�ω2i, and �ω3i. Thus, ω2 and ω3 are referred to as the natural
frequencies, and their relationship with the height is shown in
Fig. 4. For the special case h ¼ 0 km, ω2 is equal to ω3. When
the height is hcri, ω2 degenerates into zero, so the eigenvalue
spectrum consists of two pairs of zero eigenvalues and
a pair of conjugate imaginary eigenvalues, i.e., 0, 0, 0, 0,
and �ω3i. When the height exceeds hcri, the eigenvalue spec-
trum consists of a pair of conjugate imaginary eigenvalues,
a pair of real eigenvalues, and a pair of zero eigenvalues,
i.e., 0, 0, �ωi, and �λ. Since in this simulation there is
a one-to-one correspondence between the height h and
angle θ, there also exists a critical value of θ, which plays
the same role as the hcri. The analysis and results below are
carried out based on the different displaced heights h or, in
other words, different values of θ. Furthermore, the following
results can also generalize to other relative orbits with
ρ ≠ rGEO, ω ≠ ωGEO, in which scenario there still exists a
hcri to differentiate the eigenvalues, but its value is changed
rather than 18,700 km.

From the linear stability theory point of view, the positive
real eigenvalue þλ in the h > hcri case indicates the instability
of relative motions; however, the zero eigenvalue for the h < hcri
case cannot yield the same conclusion. Thus, the Jordan
decomposition is used to investigate the linearized relative
motions, which is one of the contributions developed in this
paper.

For the scenarios in which the follower flies ahead or behind
the chief on the same displaced circular orbit, the existence of
multiequilibria on the along-track direction in Eq. (16) or
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Fig. 3 Comparison between the linearized and nonlinear relative
motions: (a) relative trajectory: views and 3-D plot in the O2 frame;
(b) the time history of the errors between them; (c) MRE in the
along-track direction for different displaced heights.
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Eq. (18) is easy to verify, i.e., Δx ¼ Δz ¼ 0, Δy ≠ 0,
Δ_x ¼ Δ_y ¼ Δ_z ¼ 0, which is substituted into Eq. (16) or
Eq. (18) to yield

EQ-TARGET;temp:intralink-;e020;63;272−ω2 þ μ∕r3 ¼ a sin α∕ρ: (20)

It is interesting to prove that Eq. (20) can be derived from a and
α in Eqs. (2) and (3). Thus, q1 ¼ ½0;1; 0;0; 0;0�T is one of
the eigenvectors of Φ or Φ̃ and is derived from _X ¼
d
dt ½ΔrTo Δ_rTo �T ¼ ΦX or _X ¼ d

dt ½ΔrT Δ_rT �T ¼ Φ̃X, where

EQ-TARGET;temp:intralink-;e021;63;192Φ ¼
�

0 I
−B −A

�
; Φ̃ ¼

�
0 I
−B̃ −Ã

�
: (21)

According to the Jordan decomposition, the double zero
eigenvalues have a geometric multiplicity of 1 but an algebraic
multiplicity of 2. Thus, Φ (or Φ̃) has the following Jordan
decomposition

EQ-TARGET;temp:intralink-;e022;326;752

Φ · ½q1; q2; q3; q4; q5; q6� ¼ ½q1; q2; q3; q4; q5; q6� · J;

J ¼

2
6666666664

0 1

0

0 −ω2

ω2 0

0 −ω3

ω3 0

3
7777777775
; (22)

where all blank elements in J are zeros. Equation (22) can be
expanded to yield Φ · q1 ¼ 0, Φ · q2 ¼ q1; : : : , and these two
equations can be combined to gain Φ2 · q2 ¼ Φ · q1 ¼ 0.
Therefore, Φ2 has two eigenvectors with a zero eigenvalue,
one of which is q1, which was proven in the previous section.
Therefore, q2 is the other eigenvector with a zero eigenvalue.

For any zðtÞ6×1, the state X spanned by X ¼
½q1; q2; q3; q4; q5; q6� · z ¼ Q · z is substituted into _X ¼ ΦX
to yield, with the help of Eq. (22), Q · _z ¼ ΦQ · z ¼ QJ · z.
For the simplified system _z ¼ Jz, the general solution can be
written as zðtÞ ¼ eJtzð0Þ, where zð0Þ is any initial vector and
the term eJt is expanded as

EQ-TARGET;temp:intralink-;e023;326;500eJt ¼

2
66666664

1 t
1

cω2t −sω2t
sω2t cω2t

cω3t −sω3t
sω3t cω3t

3
77777775
: (23)

The components of zðtÞ can be solved as z1ðtÞ ¼
z1ð0Þ þ z2ð0Þ · t, z2ðtÞ ¼ z2ð0Þ, z3ðtÞ ¼ z3ð0Þ · cω2t − z4ð0Þ ·
sω2t; : : : , where zi, i ¼ 1;2; : : : ; 6, is the i’th component of
z. The first z1ðtÞ ¼ z1ð0Þ þ z2ð0Þ · t indicates that the only
“zero” condition that maintains the bounded relative trajectories
is z2ð0Þ ¼ 0.

Based on the previous statements, the general state X can be
solved as

EQ-TARGET;temp:intralink-;e024;326;311X ¼ ½q1; q2; q3; q4; q5; q6�eJt × zð0Þ; (24)

where qi, i ¼ 1;2; : : : ; 6, serve as the initial values of the six
fundamental motions, ½q1; q2; q3; q4; q5; q6�eJt gives the evolu-
tion of the fundamental motions at any moment t, and zð0Þ is the
linear combination coefficient of qi used to select the different
fundamental motions for specified missions.

The first motion propagated from q1 will remain stationary in
the along-track direction, i.e., Δy ¼ q1·z1ðtÞ ¼ z1ð0Þ, as shown
in Fig. 5(a). The second motion propagated from q2 provides the
follower with the maximum along-track velocity leaving or
approaching the chief with no velocity in other directions,
as shown in Fig. 5(b). According to the numerical results, q2
has the form q2 ¼ ½ x0 0 z0 0 _y0 0 �T , and the relation-
ships between the displaced height h and the ratios of x0∕_y0 and
the relationships between h and z0∕_y0 are shown in Fig. 6. The
z0 component degenerates into zero in the Keplerian case, and
the other components x0 ¼ − 2

3
_y0
ω satisfy the requirements of

eliminating the first term (corresponding to q1), third term, and
fourth term (corresponding to q3∕q4 and q5∕q6) in the along-
track motion of the classic C-W equation, i.e., the y axis as20
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EQ-TARGET;temp:intralink-;e025;326;331

8>>><
>>>:

xðtÞ ¼ �
4x0 þ 2_x0

ω

�þ _x0
ω sin ωt −

�
3x0 þ 2_y0

ω

�
cos ωt

yðtÞ ¼ �
y0 −

2_x0
ω

�
− 3½2ωx0 þ _y0�tþ −2

�
3x0 þ 2_y0

ω

�
sin ωt

þ 2_x0
ω cos ωt

zðtÞ ¼ _z0
ω sin ωtþ z0 cos ωt

:

(25)

The third and fourth motions propagated from q3 and q4
show the same trajectories in the position space but have a
different phase angle of π∕2, shown as the blue trajectories
in Fig. 5(c). From the linearized point of view, they are planar
and periodic with the frequency of ω2 and always hold
the invariant momentum moment Ho ¼ Δro × Δ_ro (or H ¼
Δr × Δ_r). The same conclusion is obtained for the fifth and
sixth motions propagated from q5 and q6 but with the circular
frequency of ω3, shown as the red trajectories in Fig. 5(c). The
two momentum moments achieved by q3∕q4 and q5∕q6 are
perpendicular to each other. In contrast to the single frequency
periodic trajectories for the C-Wequations, the general bounded
relative trajectories remain on an invariant torus with the two
frequencies ω2 and ω3 on the perpendicular axes, as shown in
Fig. 5(d).

The structural stability of the relative trajectories at different
displaced heights h should be verified. The 1:1 resonance case at
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Fig. 5 Relative fundamental motions in the O2 frame: the height, the radius, and the angular velocity of
the displaced circular orbit are 150 km, rGEO, and ωGEO, respectively.

Fig. 6 Relationship between the displaced fundamental motions in
the O2 frame: the radius and the angular velocity of the displaced
circular orbit are rGEO and ωGEO, respectively.
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Fig. 7 Resonant relative trajectories in the cases in the O2 frame: (a) ω2∶ω3 ¼ 1∶1, (b) ω2∶ω3 ¼ 1∶2,
(c) ω2∶ω3 ¼ 1∶3, (d) ω2∶ω3 ¼ 1∶4, (e) ω2∶ω3 ¼ 2∶3, and (f) ω2∶ω3 ¼ 2∶5.

Journal of Astronomical Telescopes, Instruments, and Systems 045001-8 Oct–Dec 2018 • Vol. 4(4)

Pan and Xu: Distributed situational observer in a displaced orbit: relative dynamics and control



h ¼ 0, i.e., the classic C-W equations on the Keplerian circular
orbit, has three double eigenvalues: 0, þω, and −ω. The geo-
metric multiplicity and algebraic multiplicity of þω and −ω are
two, respectively, which indicates that the h ¼ 0 case has the
same topological structure as the h < hcri cases. In the interval
of h ∈ ½0; hcriÞ, the ratio of ω3∕ω2 increases from one to infinity,
thus some rational ratios are available, i.e., the resonance cases
ω2∶ω3 ¼ m∶n, where m and n are positive commutative inte-
gers. Then, all bounded relative trajectories will be periodic
rather than quasiperiodic with orbital periods of n · 2π∕ω2

(or m · 2π∕ω3), as shown in Fig. 7, where the radius and the
angular velocity of the displaced circular orbit are rGEO and
ωGEO, respectively, and all trajectories are propagated from
q3 þ q5.

However, a bifurcation occurs at h ¼ hcri where quadruple
zero eigenvalues exist due to the degeneration of �ω2 into dou-
ble zeros. The zero eigenvalues have an algebraic multiplicity of
four and a geometric multiplicity of two with the Jordan norm
form as J1 in Eq. (26) rather than the form as J2, which can be
confirmed by the numerical results that all the eigenvalues ofΦ2

are real rather than Φ4,
EQ-TARGET;temp:intralink-;e026;63;521

J1 ¼

2
6666666664

0 1

0

0 1

0 0

0 −ω3

ω3 0

3
7777777775
;

J2 ¼

2
6666666664

0 1

0 1

0 1

0

0 −ω3

ω3 0

3
7777777775
: (26)

Four fundamental motions are solved from the Jordan decom-
position, as q1 ¼ ½0;1; 0;0; 0;0�T for the static station-keeping
in the along-track direction, q2 ¼ ½ x0 0 z0 0 _y0 0 �T
provides the along-track velocity leaving or approaching the
chief, and q3∕q4 (with a difference in phase angle of π∕4) pro-
vides the periodic trajectories with the only frequency of ω3.

For the h > hcri case, the double zero eigenvalues with the
geometric multiplicity of one cause the two fundamental
motions propagated from q1 and q2, and the conjugate imagi-
nary eigenvalues provide the periodic trajectories with the only
frequency of ω3 propagated from q3 and q4. The real eigenval-
ues �λ generate the unstable e�λt ≈ 1� λt terms, which causes
the other leaving (or approaching) directions to propagate from
their eigenvectors q5 and q6 (they have the same components,
with the exception of the opposite y0 and _y0 components), as
shown in Fig. 8. The results indicate that q2, q5, and q6 are
independent of each other.

3.3 Off-Axis Equilibrium by Extracontrol

In the previous discussion, all equilibria solved from the
linearized relative Eq. (16) are located in the along-track direction
(i.e., y axis), which is referred to as the along-axis equilibrium.
However, some astronautical missions, such as the phased array
antenna in Sec. 5, require the centers of relative tori to be located
above or behind the y axis, which is referred to as the off-axis
equilibrium and denoted as Δr� ¼ ½Δx�;Δy�;Δz��T .

The new relative position of the follower with respect to the
off-axis equilibrium is denoted by δr ¼ Δr0 − Δr�; it is substi-
tuted into Eq. (16) to yield

EQ-TARGET;temp:intralink-;e027;326;425δr̈þ Aδ_rþ Bδr ¼ uo − BΔr�: (27)

If the extracontrol of the follower uo is set as the open-loop uo ¼
BΔr� in the O frame, Eq. (27) will degenerate into Eq. (16),
which indicates that both the numerical and analytical solutions
developed in Secs. 3.2 and 4.1 are available for the off-axis equi-
librium case. An illustration of the off-axis periodic relative tra-
jectories is shown in Fig. 9, where the height, the radius, and the
angular velocity of the displaced circular orbit are 150 km, rGEO,
and ωGEO, respectively. Rather than periodic trajectories from

Fig. 8 Unbounded relative trajectories propagated from q2 and q5 in
the cases in the O2 frame: the height, the radius, and the angular
velocity of the displaced circular orbit are 19,000 km, rGEO, and
ωGEO, respectively.

Fig. 9 Off-axis relative trajectories propagated from q3, q4, q5, and q6 in
the O frame: (a) black trajectory, Δr� ¼ ½1;1;1�T km; (b) red trajectory,
Δr� ¼ ½0.5;−0.5; 0.5�T km; (c) blue trajectory,Δr� ¼ ½−1;−1;−1�T km;
and (d) magenta trajectory, Δr� ¼ ½0.5; 0.5;−0.5�T km.
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q3, q4, q5, and q6, some fixed points propagated from q1 will
maintain a constant distance and orientation in space, which
has potential applications in InSAR measurement on a displaced
GEO.

Thus, the expected acceleration of the follower provided by
the low thrust is given in the chief-centered O frame as

EQ-TARGET;temp:intralink-;e028;63;686uo ¼ BΔr� þ
2
4 cosðθ − αÞ
0

sinðθ − αÞ

3
5 −

2
4 0

a sin α · Δφ
0

3
5; (28)

where the first term is the extracontrol, the second term is the
BPA of the chief, and the third term is the difference in BPA
between the follower and the chief.

4 Linearized Relative Motions in a Displaced
Circular Orbit Derived from Reduced
Dynamics

4.1 Linearized Relative Motions Derived from
Reduced Dynamics and Their Analytical
Solutions

In the reduced dynamics, the displaced circular orbit of the chief
is mapped onto an equilibrium point in the ðρ; hÞ space, which is
denoted by ρ0, h0, and ϕ0 (¼ωt, i.e., the angular momentum
along the zi axis (MMZA) hz0 ¼ ρ20 · ω) in the C frame. With
only the BPA, the moment of momentum along the zi axis
will always remain invariant. However, the follower may have
a different angular momentum denoted hz ¼ hz0 þ Δhz, with
the angular component denoted ϕ ¼ ϕ0 þ Δϕ.

To derive the follower’s linearized relative motions with
respect to the chief, an intermediate orbit ðρ1; h1Þ, which is
defined as the displaced circular orbit with the same hz as
the follower’s one, is introduced in this section. ðρ1; h1Þ is
the equilibrium of Eq. (5), and δρ ¼ ρ1 − ρ0 and δh ¼
h1 − h0 have the following relationship between chief’s ðρ0; h0Þ
and Δhz by the Taylor linearization as

EQ-TARGET;temp:intralink-;e029;63;336

8<
:

	
3
h2z0
ρ4
0

− 3μ
ρ2
0

r5
0

þ μ
r3
0



δρ − 3μ ρ0h0

r5
0

δh ¼ 2μ hz0
ρ3
0

Δhz	
1
h0
− 3 h0

r2
0



δh − 3 ρ0

r2
0

δρ ¼ 0
; (29)

where r0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ20 þ h20

p
. Thus, both δρ and δh can be solved from

the previous equation and are dependent onΔhz but independent
of time.

Compared with the intermediate orbit, the position compo-
nents of the follower are denoted by ρ ¼ ρ1 þ Δρ, h ¼
h1 þ Δh; they are substituted into Eqs. (5) and (6) to simplify
the equation by the Taylor linearization, which yields

EQ-TARGET;temp:intralink-;e030;326;675�Δρ̈
Δḧ

�
¼ M

�Δρ
Δh

�
;

M ¼

2
64−3 h2z
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1
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1

r5
1

− μ
r3
1

3μ ρ1h1
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1

3μ ρ1h1
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1
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1

r5
1

− μ
r3
1

3
75; (30)

but the angular component is simplified compared with chief as

EQ-TARGET;temp:intralink-;e031;326;571Δϕ̈ ¼ −2
ω

ρ0
ðΔ_ρþ δ_ρÞ ¼ −2

ω

ρ0
Δ_ρ; (31)

where hz ¼ hz0 þ Δhz, r1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ21 þ h21

p
. Equation (30) does not

have a velocity term, which greatly contributes to deriving
the analytical solutions of Eqs. (30) and (31). Therefore, a
real nonsingular matrix T exists to transform M into a diagonal

matrix by two eigenvalues η1 and η2, i.e., T−1MT ¼
h η1 0

0 η2

i
,

where
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; (32)

EQ-TARGET;temp:intralink-;e033;63;272T ¼
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Furthermore, some discussions about η1 and η2 are listed as follows:

a. when h1 ¼ 0, both eigenvalues are negative and equal as η1 ¼ η2 ¼ − μ
ρ3
1

; they are denoted by the pair −ω2
2 and −ω2

2
(ω2 > 0, ω3 ¼ ω2), respectively;

b. when 0 < h1 < hcri ¼ ρ0


1
8
ð1 − ρ21

4μ2

9h2z
Þ þ
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4μ2
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q
3

rs
(for the

displaced GEO with ρ1 ¼ rGEO and ω ¼ ωGEO, hcri is equal to 18,700 km), the two eigenvalues are negative and
different; they are denoted by −ω2

2 and −ω2
3 (0 < ω2 < ω3), respectively;

c. when h1 ¼ hcri, one of the eigenvalues is equal to zero, and the other eigenvalue is negative; they are denoted by 0 and
−ω2

3 (ω3 > 0, λ ¼ 0), respectively;
d. when h1 > hcri, one of the eigenvalues is positive, and the other eigenvalue is negative; they are denoted byþλ2 and −ω2

3
(λ > 0, ω3 > 0), respectively.
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Considering the geometry of the C and O2 frames, it is
derived by a first-order approximation

EQ-TARGET;temp:intralink-;e034;326;741

(Δx ¼ ρ cos Δϕ − ρ0 ≈ Δρþ δρ
Δy ¼ ρ sin Δϕ ≈ ρ0Δφ
Δz ¼ Δhþ δh

; (34)

which indicates that the two frames are equal, and the analytical solutions to Eq. (16) or Eq. (18) can be derived from
Eqs. (29)–(31) as
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�
ω3tþ b3


þ δh

;

(35)

EQ-TARGET;temp:intralink-;e036;63;580when h1 ¼ hcri;

8<
:

Δx¼ T11 · ða2 þ b2tÞþT12 · a3 cosðω3tþ b3Þþ δρ

Δy¼ ρ0Δϕj0 þT12 · a3
2ω
ω2

sin b3 þðρ0Δ _ϕj0 þT12 · a32ω cos b3Þt−T11 · ωb2t2 −T12 · a3
2ω
ω3

sinðω3tþ b3Þ
Δz¼ T21 · ða2 þ b2tÞþT22 · a3 cosðω3tþ b3Þþ δh

;

(36)

EQ-TARGET;temp:intralink-;e037;63;511when h1 > hcri;

8>>><
>>>:

Δx¼ T11 · ða2eλt þ b2e−λtÞ þT12 · a3 cosðω3tþ b3Þ þ δρ

Δy¼ ρ0Δϕj0 þT11 ·
2ω
λ ða2 − b2Þ þT12 · a3

2ω
ω2

sin b3 þ ½ρ0Δ _ϕj0 þT11 · 2ωða2 þ b2Þ þT12 · a32ω cos b3�t
−T11 ·

2ω
λ ða2eλt − b2e−λtÞ−T12 · a3

2ω
ω3

sinðω3tþ b3Þ
Δz¼ T21 · ða2eλt þ b2e−λtÞ þT22 · a3 cosðω3tþ b3Þ þ δh

;

(37)

where Tij is the element in the i’th row and the j’th column of T, Δϕ0 and Δ _ϕ0 are determined by the initial value and
its velocity at the epoch moment, and am, bn ðm; nÞ ¼ ð2;3Þ is determined as

EQ-TARGET;temp:intralink-;e038;63;401when h1 < hcri;

�
a2 cos b2
a3 cos b3

�
¼ T−1

�
Δxj0 − δρ
Δzj0 − δh

�
; and

�
a2 sin b2
a3 sin b3

�
¼

�
1∕ω2 0

0 1∕ω3

�
T−1

�
Δ_xj0
Δ_zj0

�
; (38)

EQ-TARGET;temp:intralink-;e039;63;356when h1 ¼ hcri;

�
a2
a3 cos b3

�
¼ T−1

�
Δxj0 − δρ
Δzj0 − δh

�
; and

�
b2
a3 sin b3

�
¼

�
1∕λ 0

0 1∕ω3

�
T−1

�
Δ_xj0
Δ_zj0

�
; (39)

EQ-TARGET;temp:intralink-;e040;63;316when h1 > hcri;

�
a2 þ b2
a3 cos b3

�
¼ T−1

�
Δxj0 − δρ
Δzj0 − δh

�
; and

�
a2 − b2
a3 sin b3

�
¼

�
1∕λ 0

0 1∕ω3

�
T−1

�
Δ_xj0
Δ_zj0

�
: (40)

The difference in MMZA between the follower and the chief,
i.e., Δhz, can be achieved from the initial values. Substituting
the initial ρ ¼ ρ0 þ Δρj0 þ δρ ¼ ρ0 þ Δxj0 and _ϕ ¼ ωþ Δ _ϕj0
into hz ¼ ρ2 _ϕ and simplifying by the Taylor linearization yields

EQ-TARGET;temp:intralink-;e041;63;219Δhz ¼ 2
Δxj0
ρ0

þ Δ _ϕj0
ω

: (41)

Therefore, combining Eqs. (29) and (35)–(41) yields the ana-
lytical solutions to the linearized relative motions. Figure 10 is
the comparison between the numerical solutions and analytical
solutions, which confirms that Eqs. (16), (18), (30), and (31) are
equivalent. Some discussions about the analytical results are
listed as follows:

a. the results prove that the analytical solutions will
degenerate into Eq. (25) when h1 ¼ 0;

b. when h1 < hcri, the only factor that causes the bound-
edness in the along-track direction is the zero
initial value of Δ _ϕj0 þ T11 · a2

2ω
ρ0

cos b2 þ T12 ·

a3
2ω
ρ0

cos b3 ¼ 0 or Δ _ϕj0 þ T11 ·
2ω
ρ0
ða2 þ b2Þ þ

T12 · a3
2ω
ρ0

cos b3 ¼ 0, which will degenerate into

the C-W “zero” condition as Δ _ϕj0 þ 2ω
ρ0
Δxj0 ¼ 0.

The relative trajectories that satisfy the condition
are referred to as the naturally bounded trajectories.

4.2 Bounded Relative Trajectories by Extracontrol

In general, science applications based on formation flying
require the spacecraft to remain in the vicinity of each other.
However, a slight deviation from the initial values (e.g.,
q3; : : : ; q6 or Δ _ϕ0 ¼ 0 when h0 < hcri) generates an increase
over time in the along-track component. Thus, controlled
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bounded relative trajectories with the arbitrary initial values are
investigated in this section. In practice, the low-thrust propul-
sion used by the follower can supply the BPA to displace above
the Earth and the extra-acceleration to generate bounded trajec-
tories for any initial value.

When h0 < hcri, Eqs. (35)–(37) demonstrate that the motions
along the Δρ (or Δx) and Δh (or Δz) directions are always
bounded, with the exception of the Δϕ (or Δy). Thus, a
closed-loop control with only the feedback from Δϕ, i.e.,
u ¼ −ω2

1Δϕ, is proposed in this section to yield this new
type of relative trajectories, which is formulized as

EQ-TARGET;temp:intralink-;e042;63;157Δϕ̈ ¼ −2
ω

ρ0
Δ_ρþ u; (42)

whereΔ_ρ¼−T11 ·a2ω2 sinðω2tþb2Þ−T12 ·a3ω3 sinðω3tþb3Þ
is derived from Eq. (35). Thus, the extracontrol u ¼ ½0; u; 0�T of
the follower introduces a new frequency ω1 in the along-track
direction, which is indicated by the analytical solutions to
Eq. (42) as

EQ-TARGET;temp:intralink-;e043;326;471Δϕ ¼ a1 sinðω1tþ b1Þ þ
T11 · a2ω2

ω2
1 − ω2

2

sinðω2tþ b2Þ

þ T12 · a3ω3

ω2
1 − ω2

3

sinðω3tþ b3Þ; (43)

where a1 and b1 are determined by the initial values at the epoch
moment. The new frequency ω1 is equal to neither ω2 nor ω3 to
avoid resonance. To make the proposed control available in the
nonlinear relative dynamics, a very small damping term δΔ _ϕ is
added as u ¼ −ω2

1Δϕ − δΔ _ϕ to maintain the controlled poles
away from the imaging axis, as shown in Fig. 11.

When h0 ≥ hcri, the stabilization in the Δϕ (or Δy) direction
is implemented by the same controller as the h0 < hcri case;
however, the real eigenvalues �λ along the other directions
can be stabilized by the Hamiltonian-structure control (HSP).
HSP is a sufficiently powerful tool to stabilize motions near
the unstable equilibrium, which is developed by Refs. 21–23.
Due to the Hamiltonian structure of dynamics in the ðρ; hÞ
space, i.e.,

n
ρ̈ ¼ −∂U∕∂ρ
ḧ ¼ −∂U∕∂h

, where U ¼ U þ h2z∕2ρ2, the HSP

can be designed as
EQ-TARGET;temp:intralink-;e044;326;230

u ¼ −½G1 · λ2ðvþvTþ þ v−vT−Þ þ G2 · ω2
3ðvvH þ v vHÞ�

· ½Δρ Δh �T −ϖJ · ½Δ_ρ Δ _h �T; (44)

where J is the symplectic matrix; G1 and G2 are the control
gains; ϖ is the gain of the Coriolis term; vþ and v− are the
eigenvectors that correspond to the real eigenvalues þλ and
−λ, respectively; and v and v are the conjugate eigenvectors
that correspond to the imaginary eigenvalues �ω3. In the con-
troller, the G1 term is used to weaken the unstable manifolds
characterized byþλ, the G2 term is used to strengthen the center
manifolds characterized by �ω3, and the ϖ term is used to
strengthen the coupling effects of the previous two terms.
The controlled bounded trajectories are shown in Fig. 12 regard-
less of the initial values.

Fig. 11 Bounded controlled relative trajectories regardless of the ini-
tial values when h0 < hcri integrated in the nonlinear relative dynamics
and drawn in the O2 frame: the height, the radius, and the angular
velocity of the displaced circular orbit are 150 km, rGEO, and ωGEO,
respectively; the control parameters ω1 and δ are 2ωGEO and 1 × 10−6.
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Fig. 10 Comparison between the numerical integration of linearized
equations from spatial dynamics and the analytical solution of the lin-
earized equation of the reduced dynamics in the O2 frame: the height,
the radius, and the angular velocity of the displaced circular orbit are
150 km, rGEO, and ωGEO, respectively.
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5 Applications in a Displaced Geostationary
Orbit Mission

A cluster on a displaced orbit has a range of potential applica-
tions, such as Earth surface imaging and cooperative communi-
cation. Here, two examples are provided for a displaced GEO:
the first example is to fix the relative baseline vector for InSAR
measurement or Earth imaging by a chief and a follower, and the
second example is to provide repeating relative ground tracks for
space-based phased array antenna missions.

5.1 Fixed Relative Baseline Vector for InSAR or
Fresnel Zone Lens Missions

InSAR systems could generate high-resolution radar images
of Earth’s surface using the amplitude and phase information
of received echoes in any weather or lighting conditions.24

Different receiver configurations can be used to produce
digital elevation models (DEM), detect moving objects on the

ground, produce super-resolution imagery, or measure tempo-
rally changing terrain features. Usually, a certain line-of-sight
angle (defined as the angle between the line of sight and the
zo axis) or beam angle from the cluster to the target prefers
a fixed pointing direction. To minimize the measuring errors,
the optimal length of the across-track baseline for DEM can
be calculated, which is dependent on the beam angle of the
radar equipment.

According to Ref. 25, the across-track baseline Bn is the
component normal to the sight-line of the projection of the
spatial baseline B onto the range-elevation plane, formulated as

EQ-TARGET;temp:intralink-;e045;326;631Bn ¼ B · ½sin θL cos θL cos γ − cos θL sin γ�T; (45)

where θL is the line-of-sight angle, γ is the squint-angle sepa-
rated from orbital plane, and B is the baseline measuring
the relative position of formation crafts. For the radar
equipment in Ref. 25, the line-of-sight angle for DEM is set
to θL ¼ 35 deg on the lower left side of the along-track
direction, γ ¼ 90 deg, and the length of the baseline is set to
B ¼ 5 km. To maximize Bn, the baseline B is designed parallel
to ½sin θL cos θL cos γ − cos θL sin γ�T , thus the off-axis equi-
librium Δr� ¼ B½− sin θL; 0; cos θL�T is designed according to
the extra-control strategy developed in Sec. 3.3 to yield a fixed
distance.

In this mission, the radar is installed on the chief and, assum-
ing that there is an angle between the radar and the thrust direc-
tion, is denoted by ξ. To observe the Earth surface at different
latitudes, the radar is required to rotate a certain angle to be
perpendicular to the line-of-sight, which results in the variation
of the thrust direction. Limited by the observing region and the
thrust direction, the radius and displaced height of the chief’s
orbit can be determined uniquely. The sketch of the InSAR sys-
tem and the orientation baseline provided by the follower and
the chief are shown in Fig. 13(a). According to the spatial
baseline, the relative motion and the orbit of the follower can
be obtained as well. Some examples are presented below to
show how the displaced formations apply to the observation
of different latitudes of the Earth.

In the simulation, the orbit of the chief is displaced at the
height of 150 km with ρ ¼ rGEO, ω ¼ ωGEO, which can observe
the Earth surface around 0.2-deg latitude, and the thrust direc-
tion is approximately parallel to the radar (the installation angle
ξ between the thrust direction and radar is 0.1 deg). The orbit of
the follower is displaced at h ¼ 154 km with ρ ¼ 42;161 km,
ω ¼ ωGEO so that the initial conditions of the relative motions
are ½Δr�; 0;0; 0�T in the chief’s O frame. Compared with the
BPA of 7.97 × 10−4 m∕s2 required by the chief, the required
acceleration of the follower is 8.20 × 10−4 m∕s2. Considering
an electric thruster with a specific impulse of 3000 s and a
large 1000 kg geostationary platform, for example, the extrap-
ropellant mass per orbit (or day) for the follower is 0.05 kg. To
observe another region of the Earth, for example, the surface
around 5-deg latitude, the thrust direction of the chief is changed
from −0.306 deg to −4.892 deg due to a constant ξ ¼ 0.1 deg.
With the angular velocity ω ¼ ωGEO, the height and radius of the
displaced orbit are solved as h ¼ 3684 km, ρ ¼ 42;108 km.
The relationships between the observation latitude δ and the
location of the chief’s displaced orbit under different installation
angles ξ are shown in Fig. 13(b), which indicates the displaced
height increases with the increasing latitude δ.

From the perspective of the interferometry, the optimal
length of the across-track baseline is expected to remain
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Fig. 12 Bounded controlled relative trajectories regardless of the
initial values: (a) when h0 > hcri; (b) when h0 ¼ hcri integrated in
the nonlinear relative dynamics and drawn in theO2 frame; the height,
the radius, and the angular velocity of the displaced circular orbit
are 19,000 km (a) or hcri (b), rGEO and ωGEO, respectively; the control
parameters ω1, δ, and ðG1; G2;ϖÞ are 2ωGEO, 1 × 10−7 and (1,0,0) for
(a) or (0;1;1 × 10−7) for (b).

Journal of Astronomical Telescopes, Instruments, and Systems 045001-13 Oct–Dec 2018 • Vol. 4(4)

Pan and Xu: Distributed situational observer in a displaced orbit: relative dynamics and control



unchanged for the entire orbital period, that is, the chief and
follower stay parallel, then achieve the interferometry at any
moment. However, the classic formation cannot realize the par-
allel relative motion, and the classic follower’s configurations in
the vicinity of the chief produce a sine-like wave-shaped base-
line. It indicates that only two spacecraft in classic formation
cannot provide a fixed baseline vector and only certain positions
of the trajectories can be utilized for the InSAR mission.26 The
practice of the TSX-TDX mission developed by DLR also veri-
fies the previous conclusion: a series of configurations were
used in the mission life, as any configuration can work in a nar-
row range of geographical altitudes due to the time-dependent
baseline.27 On the contrary, the distributed situational observer
in displaced orbits can easily form a parallel configuration, and
the across-track baseline is fixed, which removes the restriction
of interferometry in the position and time compared with the
classical formation around Keplerian orbits.

For the Earth surface–chief–follower colinear case shown in
Fig. 14(a), the chief and the follower can act as the Fresnel zone

lens and the charge-coupled-device (CCD) imager, respectively,
to create a space-based large distributed lens. The Fresnel zone
lens is a focusing and imaging device with the lenses of large
aperture and short focal length, which can capture more oblique
light from a light source, thus allowing the light to be visible
over greater distances.28 Since the Fresnel zone lens and the
CCD imager are widely used and investigated in the field of
optical systems, this section merely discusses the application
of displaced formation in the Earth surface imaging in terms
of the trajectory design.

In this mission, the orbit of the chief (i.e., Fresnel zone lens)
is still displaced at the height of 150 km with ρ ¼ rGEO,
ω ¼ ωGEO, and the off-axis equilibrium lies along the xo
axis, as Δr� ¼ f · ½1;0; 0�T , where f is the focal length of the
lens. For the same spacecraft and displaced height adopted in
the InSAR mission, the focal length of 5 km will cost the extrap-
ropellant mass of 0.05 kg∕orbit (or day). Similarly, this Fresnel
zone lens mission can merely achieve the continuous imaging
around 0.2 deg latitude of the Earth. Assuming that the angle
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Fig. 14 Fixed relative baseline vector for the Fresnel zone lens mis-
sions: (a) abridged general view of the geometry of the follower, the
chief, and the fixed baseline; (b) relationships between the angle η
and the chief’s displaced orbit for different observation latitudes δ;
the installation angle between the thrust direction and lens is
ξ ¼ 0.1 deg.
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Fig. 13 Fixed relative baseline vector for the InSAR missions:
(a) abridged general view of the geometry of the follower, the
chief, and the fixed baseline; (b) relationships between the observa-
tion latitude δ and the location of the chief’s displaced orbit under
different installation angles ξ.
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between the thrust direction and lens, denoted by ξ, is still con-
stant, to observe other latitudes δ, the orbit of the chief and
follower should also be changed correspondingly according to
the methodology above.

The sketch of the orientation baseline provided by the
follower and the chief is shown in Fig. 14(a). To meet the
condition of Earth surface–chief–follower on the same line,
the off-axis equilibrium can be designed as Δr� ¼ f ·
½cosðη − δÞ; 0; sinðη − δÞ�T , where δ is the latitude and η is
changeable. For a specific value of η, there is only one displaced
orbit of the chief that meets the requirement of the constant
angle between the thrust direction and lens, and then the relative
motion can be determined with Δr�. Specially, when η ¼ δ, that
is the case of the off-axis equilibrium lying along the xo axis in
the last simulation, the relationships between the observation
latitude δ and the location of the chief’s displaced orbit are
the same with Fig. 13(b). As for other cases of η ≠ δ, the rela-
tionships between chief’s displaced orbits and different angles η
are shown in Fig. 14(b). It is indicated that the displaced height
increases with the increasing angle η while the orbital radius
decreases with the increasing angle η as well as the increasing
latitude δ. Similarly to the advantages of displaced formation
applied in InSAR measurements, the relative baseline vector
for Earth imaging is fixed for the entire orbital period, which
can realize the continuous imaging in any position of the
displaced orbits.

5.2 Repeating Relative Ground Tracks for Phased
Array Antenna Mission

In antenna theory, a phased array usually means an electroni-
cally scanned array that creates a beam of radio waves and elec-
tronically steers waves to point in different directions, without
moving the antennas.29 For the space-based phased array
antenna mission, two basic requirements exist for the configu-
ration geometry of the array antennas. The first requirement is to
provide the repeating petal-like ground tracks on the yo-zo plane
to revisit the surveillance area, and the second requirement is to
assign numerous array antennas in a neat and regular manner.
According to Sec. 3.2, the formation in resonant displaced
heights will produce periodic relative trajectories rather than
quasiperiodic trajectories, such as the 2:3 resonance resulting
in polygonal-like relative ground tracks. Based on Sec. 3.3,
the existence of off-axis equilibria by extracontrol of the fol-
lower will enable the assignment of array antennas in any posi-
tion. Compared with the existing phased array antenna systems
whose area is confined to a single satellite platform, phased
array antenna missions in this paper are implemented with
numerous satellites in displaced formation, which can largely
expand the areas of array antenna and be used to monitor hot
regions of the Earth.

In this mission, the phased array antenna system still has the
same angular velocity and radius as the GEO, and the resonant
height h ¼ 5570 km is applied to generate resonant relative
trajectory with ω2∶ω3 ¼ 2∶3. The array can be designed to
various shapes such as the rectangle or circle for the specific
requirements. Below are some examples to show applications
of the off-axis equilibria in a phased array antenna system
from the perspective of concept design.

For the rectangular array system, a 13 × 21 (k ¼ 7, l ¼ 11)
array is assigned with the off-axis equilibria set to Δr� ¼
½ 0 ði − kÞfðΔyÞ ðj − lÞgðΔzÞ �, where i ¼ 1; : : : ; 13, j ¼
1; : : : ; 21, the steps and Δz are the length of the

polygonal-like ground tracks in the row and column, respec-
tively, and f and g are the functions of Δy and Δz, respectively,
which can be constant or in a regular change. With different
rules of f and g, the phased array antenna system presents
different configurations. Taking f ¼ ð1þ ði − kÞ∕2ÞΔy, g ¼
ð1þ ðj − lÞ∕2ÞΔz as an example, the antennas in rectangular
array are denser in the middle than on the sides. In this case, the
dense middle antennas can be used to monitor the target inten-
sively and clearly, whereas the sparse side antennas
monitor it globally and roughly. Particularly, for f ¼ Δy,
g ¼ Δz where Δy ¼ 3.22m, Δz ¼ 1.52 m, the 13 × 21 (k ¼ 6,
l ¼ 10) array is assigned with the antennas evenly distributed,
as shown in Fig. 15(a). The extracontrol of the phased array
antenna system in the O frame is uo ¼ BΔr�, where B is
the same form as Eq. (17). For the same spacecraft adopted
above, the maximum extra-propellant mass per day for the
phased array antenna is 0.00029 kg. The array can also be
designed to concentric circles. For instance, the off-axis

Fig. 15 Repeating relative ground tracks for a phased array antenna
mission: (a) rectangular phased array antenna system and (b) circular
phased array antenna system.
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equilibria are set to Δr� ¼ f 0 2Δzðm − 1Þ cos�2πðn−1Þ
2m−1 þ

π
7
ðm − 1Þ�2Δzðm − 1Þ sin�2πðn−1Þ

2m−1 þ π
7
ðm − 1Þ�g, where m ¼

1; : : : ; 6; n ¼ 1; : : : ; 2m − 1. The number of antennas in this
case increases gradually from the center to the brim, and
the phased array antenna system is shown as Fig. 15(b).
These examples are simulated to show the diversity of antenna
arrangements. The off-axis equilibria can also be set to other
rules for some specific requirements.

6 Conclusion
Formation flying in a displaced circular orbit by low thrust has
potential applications in providing additional views in the
northern hemisphere or southern hemisphere, compared with
those provided by a classic Keplerian orbit. The linearized rel-
ative equations were described by both the spatial dynamics in
Newtonian form and the reduced dynamics in Hamiltonian
form. Via the method of eigenvalue decomposition, the natural
frequencies are characterized by the displaced height, and sep-
arate from each other at a critical height that differentiates the
structural stability, bifurcation, and instability. The fundamental
motions achieved by the Jordan decomposition included the sta-
tionary multiequilibria, periodic, and quasiperiodic oscillations
and maximum leaving or approaching velocity. The off-axis
equilibrium case was analyzed by a proposed open-loop control,
and the motions near it were proved to be the same as the pre-
vious numerical motions. The closed analytical forms of linear-
ized relative motions were derived for all stable, bifurcating,
unstable displaced height cases. The “zero” conditions of initial
value to generate the naturally bounded relative trajectories were
derived analytically, and the unbounded relative trajectories
were operated to achieve boundedness by the two extraclosed-
loop controls regardless of the initial values.

The solutions and controls of the linearized relative motions
developed in this paper have potential applications in Earth
surface imaging and cooperative communication. A fixed rel-
ative baseline vector is provided for the InSAR or Fresnel zone
lens missions, and different orbits of formation are solved with
a constant installation angle to achieve the observation of dif-
ferent altitudes of the Earth. Resonant relative trajectories and
off-axis equilibria are applied to the repeating relative ground
tracks for a phased array antenna mission, where various
arrangements of antennas are designed for different require-
ments. The important contributions of this paper are as follows:
first, both the foundational motions in the spatial dynamical
model and closed analytical forms in the reduced dynamical
model were achieved to describe linearized relative motions
for all stable, bifurcating, and unstable cases; second, control
strategies were developed to guarantee the boundedness of rel-
ative trajectories for arbitrary initial values. Third, applications
of the displaced formations, which can provide a fixed relative
baseline vector, remove the restrictions of interferometry or
imaging in the position and time compared with the classical
formations.

However, there still remain some open problems. For
instance, the applications of displaced formation flying were
investigated and discussed for the feasibility from the perspec-
tive of the trajectory design and did not involve in the perfor-
mance evaluation of the instrument and equipment. This may
be very hard and complicated work, which will be researched
further in the next paper.
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