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Abstract. Fluorescence molecular tomography (FMT) as a noninvasive imaging modality has been widely used
for biomedical preclinical applications. However, FMT reconstruction suffers from severe ill-posedness, espe-
cially when a limited number of projections are used. In order to improve the quality of FMT reconstruction
results, a discrete cosine transform (DCT) based reweighted L1-norm regularization algorithm is proposed.
In each iteration of the reconstruction process, different reweighted regularization parameters are adaptively
assigned according to the values of DCT coefficients to suppress the reconstruction noise. In addition, the per-
mission region of the reconstructed fluorophores is adaptively constructed to increase the convergence speed.
In order to evaluate the performance of the proposed algorithm, physical phantom and in vivo mouse experi-
ments with a limited number of projections are carried out. For comparison, different L1-norm regularization
strategies are employed. By quantifying the signal-to-noise ratio (SNR) of the reconstruction results in the phan-
tom and in vivo mouse experiments with four projections, the proposed DCT-based reweighted L1-norm regu-
larization shows higher SNR than other L1-norm regularizations employed in this work. © 2015 Society of Photo-Optical

Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JBO.20.5.055004]
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1 Introduction
Fluorescence molecular tomography (FMT) is a noninvasive
biomedical imaging modality that exploits the specificity of
fluorescent biomarkers to monitor three-dimensional (3-D)
cell and molecular activities inside biological tissues.1 As a rap-
idly growing technique, FMT has already been applied to clini-
cal and preclinical studies.2,3 However, owing to the high
scattering of light propagating through tissues, the FMT inverse
problem is inherently ill-posed and quite susceptible to measure-
ment data noise and model errors. This makes accurate and
robust FMT reconstruction a challenge, especially for FMT
reconstruction with only a limited number of projections. In
order to obtain high-quality FMT reconstruction results, addi-
tional prior information is usually incorporated in the FMT
inverse problem through some regularization techniques, includ-
ing L2-norm,4 L1-norm,5 Lp norm (0 < p < 1)6, total variation
(TV) regularizations, etc.7 Although L2-norm regularization is
simple to implement and can be efficiently solved, it results in
blurred images with low spatial resolution and produces noisy
background when the inverse problem is severely ill posed.4

Based on the fact that fluorophore distribution is usually sparse
(such as the early-stage tumors tagged with fluorescent probes),
L1-norm regularization as a convex relaxation of L0-norm regu-
larization has been extensively studied and found to be able to
yield results with high-spatial resolution.5 In addition, as the
shape-based reconstruction method, the sparsity-promoting TV

regularization7 and spherical harmonics parameterization8 can
be employed to preserve edges in images for piecewise-constant
reconstruction. Recently, as a nonconvex approximation to
L0-norm regularization, the reweighted L1-norm scheme and
Lp-norm regularization have been reported to outperform the
regular L1-norm regularization.6,9 However, some consistent
efforts still need to be made to improve the reconstruction
quality for FMT, especially when only a limited number of
projections are used.

In this paper, a discrete cosine transform (DCT) based
reweighted L1-norm regularization (DCT-re-L1) algorithm is
proposed to improve the quality of reconstruction results for
the ill-posed FMT inverse problem. As an orthogonal transform,
DCT is an effective tool for image compression because of
its energy compaction property (i.e., most of the signal energy
focuses on a few large DCT coefficients).10 In view of the
high degree of space correlation, the spatial distribution of
fluorescent targets can be effectively compressed by 3-D DCT.
Thus, the sparsity character in the 3-D DCT domain can be seen
as a kind of prior information to guarantee the uniqueness and
stability of the FMT inverse problem. In order to suppress
the reconstruction noise, the high-frequency coefficients in the
DCT domain should be penalized more heavily because they
usually correspond to noise. The low-frequency coefficients
in the DCT domain should be assigned with small penalties,
because most of the image information is retained in the low-
frequency coefficients.9 In order to suppress the reconstruc-
tion noise in each iteration, an iteratively updated scheme is
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proposed to adaptively assign different L1-regularization param-
eters to different DCT coefficients. In addition, we propose
a scheme to update the permission region (without additional
anatomical information) based on the non-negative region of
the results in the previous iterations, which can speed up the
convergence and computational process and reduce the memory
consumption.

This paper is organized as follows. In Sec. 2, the mathemati-
cal framework of FMT and the proposed algorithm are pre-
sented. In Sec. 3, the physical phantom and in vivo mouse
experiments with different numbers of FMT projections are con-
ducted to evaluate the performance of the proposed algorithm.
The results are discussed and this paper is concluded in Sec. 4.

2 Methods

2.1 Forward Model for FMT

The propagation of near-infrared light in highly scattering tis-
sues is modeled by the coupled diffusion equations (DE) with
Robin-type boundary condition, when the sources and detectors
are separated by more than a few mean-free-path lengths.11 In
this paper, the normalized Born approximation to DE is adopted
to linearize the nonlinear FMT problem. This normalization
scheme can make the FMT forward model insensitive to theo-
retical errors about boundary conditions and tissue optical prop-
erties. Through Born approximation to DE, the normalized Born
average intensity ϕfðrd; rsÞ at location rd corresponding to an
illumination spot located at rs can be calculated as follows:12

ϕfðrd; rsÞ ¼
ϕemðrd; rsÞ
ϕexðrd; rsÞ

¼ S0υ
R
Gðrd; r; λ2ÞxðrÞGðrs; r; λ1Þd3r

Gðrs; rd; λ1ÞDf ; (1)

where ϕemðrd; rsÞ and ϕexðrd; rsÞ denote the average intensity at
the emission wavelength λ2 and excitation wavelength λ1,
respectively. Gðrs; r; λ1Þ is the theoretically calculated photon
field at the excitation wavelength λ1 induced at position r by
a source at position rs. Gðrd; r; λ2Þ is the Green’s function
describing photon propagation from point r to the detector
point rd at the emission wavelength λ2. Df is the diffusion coef-
ficient of the tissue at wavelength λ2. υ is the speed of light in the
tissue. S0 is a calibration factor accounting for the system gain
and attenuation. After the image domain is discretized, the FMT
forward model can be analytically solved by the Kirchhoff
approximation method,13 and the FMT problem can be formu-
lated as the following linear matrix equation:

Φf ¼ WX; (2)

where W ∈ Rm×n is the sensitive matrix mapping the vectorized
fluorophore concentration X ∈ Rn×1 into the fluorescence meas-
urement vector Φf ∈ Rm×1.

2.2 DCT-Regularized Reconstruction Algorithm

In order to obtain high-quality reconstruction results from the
ill-posed Eq. (2), sparsity-promoting regularization based on
DCT is employed and the corresponding FMT inverse problem
can be formulated as the following optimization function:

argmin
X≥0

ðkWX −Φfk22 þ ΛkkDXk1Þ: (3)

Equation (3) contains two parts: the data fidelity term which
is used to match the solution with the measurements and the
regularization term which represents a kind of prior penalty.
Matrix D ∈ RL×n denotes the real 3-D DCT matrix for the fluo-
rophore-concentration vector X, where L is the number of fre-
quency coefficients in the 3-D DCT domain. Λk is the diagonal
regularization-parameter matrix updated in the k’th iteration,
with λki ði ¼ 1; 2; · · · ; LÞ on the diagonal and zero elsewhere.
In order to roughly level off the differences in detection sensi-
tivities, Eq. (3) can be rewritten as follows:5

argmin
X≥0

ðkWnewX −Φfnewk22 þ ΛkkDXk1Þ; (4)

Wnorði; jÞ ¼
� kWik−12 i ¼ j

0 i ≠ j
; (5)

Wnew ¼ WWnor; Φfnew ¼ Φf∕maxðΦfÞ; (6)

where Wi denotes the i’th column of the sensitive matrix W. In
order to solve the DCT regularized Eq. (4), the proposed DCT-
re-L1 algorithm based on an adaptively updated regularization
parameter and permission region is proposed. As is similar to
our previously proposed restarted L1 regularization-based non-
linear conjugate gradient (re-L1-NG) algorithm,5 in each itera-
tion of DCT-re-L1, the optimization function is solved by the
L1-regularized nonlinear conjugate gradient (L1-NCG) method
with a backtracking line search.5 The main steps of the proposed
DCT-re-L1 algorithm are summarized in Algorithm 1:

The first three steps are used to initialize the permission
region and the residual by setting an identity matrix as the ini-
tialized regularization-parameter matrix Λ1. In the first iteration,
all the DCT coefficients are penalized equally because there is
no prior information about the fluorophore distribution. Steps 4
to 8 constitute the main iterative loop, where the regularization-
parameter matrix Λk and the permission region perk are adap-
tively updated. In order to suppress the reconstruction noise, the
high-frequency information corresponding to the small DCT
coefficients are penalized heavily, which is the basis by which
to construct λki as the reciprocal value of the previous DCT coef-
ficient. In order to avoid generating infinite λki when the corre-
sponding DCT coefficient ei is near zero, parameter λki is set to
be 100 [i.e., Max∕ð0:01 ×MaxÞ] when jeij ≤ 0.01 ×Max. As
shown in Step 5, Max denotes the maximum value of the calcu-
lated DCT coefficients in each iteration. Owing to the non-
negativity constraint of Eq. (4), the negative values in Xk

L1−NCG
are set to be zero, and this zero region negk can provide useful
information about the permission region. As shown in Eq. (10),
the permission region perkþ1 is iteratively updated as the com-
plement of set negk ∩ negkþ1, which means that if a reconstruc-
tion value is negative in two consecutive iterations, its index will
not belong to the permission region. Because the size of the per-
mission region is smaller than that of the entire reconstruction
region, the dimension of the sensitive matrix in Eq. (7) scales
down compared with Eq. (4), which reduces the memory con-
sumption and increases the computational speed. The algorithm
is terminated when the relative change of the residual norm
between two consecutive iterations is less than σ.
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In order to demonstrate the performance differences between
the regular L1-norm regularization and the DCT-based reweighted
L1-norm regularization, Eq. (4) is compared with the following
optimization function:5

argmin
X≥0

ðkWnewX −Φfnewk22 þ λkXk1Þ: (11)

In order to demonstrate the advantage of the proposed DCT-
based reweighted strategy, Eq. (4) is compared with the follow-
ing DCT regularized optimization function:

argmin
X≥0

ðkWnewX −Φfnewk22 þ λkDXk1Þ: (12)

Unlike Eq. (4), a constant regularization parameter is assigned
to all DCT coefficients in Eq. (12). In addition, in order to com-
pare the performance between different reweighted L1-norm
strategies, Eq. (4) is compared with the classic reweighted
L1-norm regularization function as follows:9,14

argmin
X≥0

ðkWnewX −Φfnewk22 þ λkRkXk1Þ; (13)

where Rk is the diagonal weight matrix in the k’th iteration, with
rki ði ¼ 1; 2; · · · ; LÞ on the diagonal and zeros elsewhere. The
weighed matrix Rk is iteratively updated as follows:

rki ¼
1

jxki j þ α
; (14)

where α is a stability parameter that used to avoid the division
by a zero-value component xki . In this paper, α is empirically
set to be 0.01.9 In order to better focus on the comparison
between different L1-norm regularization strategies, the
solving algorithms for Eqs. (11) to (13) are the same as
Algorithm 1 except for the difference in Step 5. When solving
Eqs. (11) to (13), the corresponding regularization parameters
are manually optimized to be 30. All the reconstruction
algorithms are implemented in MATLAB 2008a (MathWorks,
Natick, Massachusetts) on a personal computer with a i7-2600
CPU (3.40 GHz, Intel, Santa Clara, California) and 8 GB
RAM.

Algorithm 1 DCT-based reweighted L1-norm regularization.

Step 1: Initialization: Set k inner ¼ 100 as the maximum number of inner iterations for L1-NCG, σ ¼ 0.0001 as the threshold for the termination
condition of DCT-re-L1. k ¼ 1. In L1-NCG, other parameters such as the initial value, original searching direction, and two coefficients about
the backtracking line search can be found in Ref. 5.

Step 2: For Eq. (4) without a non-negative constraint, compute the solution X 1
L1−NCG using L1-NCG with k inner iterations, where the regularization-

parameter matrix Λ1 in Eq. (4) is initialized as an identity matrix. Then set the negative value in X 1
L1−NCG to be zero.

Step 3: The permission region is initialized as per1 ¼ f1;2; · · · ; ng. The first nonpositive region is set as
neg1 ¼ findices of the zero value inX 1

L1−NCGg. The normalized norm of the residual is calculated as
RMS1 ¼ normðW newX 1

L1−NCG −ΦfnewÞ∕normðΦfnewÞ.

Step 4: In the matrices W new and D, only keep the columns whose indices are incorporated in perk and obtain the new matrices W per
new and Dper.

Then the new optimization function based on the permission region turns into:

argmin
X≥0

ðkW per
newX per −Φfnewk22 þ Λkþ1kDperX perk1Þ (7)

where X per ∈ Rp×1 denotes the reconstruction-result vector in the permission region and p is the number of indices in perk .

Step 5: The initial value for Eq. (7) is set as X per
0 ¼ Xk

L1−NCGðperk Þ. Calculate the DCT-coefficient vector E ¼ DperX per
0 (E ∈ RP×1). Max ¼ maxðjE jÞ.

Generate the updated regularization-parameter matrix Λkþ1, with λkþ1
i ¼ gðei ;MaxÞ on the diagonal and zero elsewhere.

gðei ;MaxÞ ¼
�
Max∕ð0:01 ×MaxÞ if jei j ≤ 0.01 ×Max

Max∕jei j if jei j > 0.01 ×Max
(8)

Step 6: Solve Eq. (7) for X per ∈ Rp×1 using L1-NCG with k inner iterations. Then obtain Xkþ1
L1−NCG ∈ Rn×1 where the values corresponding to the

indices in perk are X per ∈ Rp×1, and the other values are zero.

Step 7: Set the negative value in Xkþ1
L1−NCG to be zero. Construct the nonpositive region as: negkþ1 ¼ findices of the zero values inXkþ1

L1−NCGg. Update
the normalized residual norm as:

RMSkþ1 ¼ normðW newX
kþ1
L1−NCG −ΦfnewÞ∕normðΦfnewÞ: (9)

Construct the corresponding permission region as

perkþ1 ¼ negk ∩ negkþ1 (10)

Step 8: k ¼ k þ 1. If jRMSk − RMSkþ1j∕RMSk < σ or k > kmax (maximum number of outer iterations), stop the iteration. Otherwise, go to Step 4.
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3 Experiments and Results

3.1 Physical Phantom Experiments

In order to evaluate the performance of the proposed algorithm,
physical phantom experiments were performed with the previ-
ously developed dual-modality FMT/X-ray computed tomog-
raphy (CT) imaging system.15 The schematic diagram of the
system is shown in Fig. 1, where the custom-made free-space
FMT and micro-cone-beam-CT subsystems were orthogonally
placed on an optical bench.

In the physical phantom experiments, a transparent glass cyl-
inder with a diameter of 3 cm and height of 6 cm filled with 1%
intralipid was employed as the phantom. The absorption and
reduced scattering coefficients were 0.02 and 10 cm−1, respec-
tively. The fluorescence targets in the phantom were two iden-
tical cylinders with diameters of 0.4 cm, each of which was

filled with 10 μL indocyanine green (ICG) with a concentration
of 1.3 μM. They were immersed in the phantom with an edge-
to-edge distance of 0.8 cm, and their centers were positioned at
(0.22 cm,−0.55 cm, 2.65 cm) and (−0.21 cm, 0.58 cm, 2.65 cm),
respectively. Through the customized optical fiber, a point inci-
dent light was generated. In order to excite ICG, a bandpass fil-
ter with a center wavelength of 770 nm and full-width at half
maximum (FWHM) of 10 nm was placed in front of a Xenon
lamp (Asahi Spectra, Torrance, California). In order to collect
the fluorescence-light measurement, a bandpass filter with a
center wavelength of 840 nm and FWHM of 12 nm was placed
in front of the highly-sensitive cooled charge coupled device
(CCD) camera (iXon DU-897, Andor Technologies, Belfast,
Northern Ireland). When collecting the excitation-light measure-
ment, a neutral density filter (with an optical density of 2) in
place of the fluorescence filter was placed in front of the CCD
camera. The detector field of view corresponding to a point exci-
tation source was about 180 deg and the detector spatial sam-
pling was set to be 0.2 cm. The normalized Born measurements
in Eq. (1) were calculated from the ratio between the measure-
ments corresponding to the fluorescence and excitation light.

First, the performances of different L1-norm regularizations
were compared based on the reconstruction results with 18 pro-
jections. The dimensions of the corresponding sensitive matrix
W were 2984 × 6196, where the discretized mesh resolution of
the phantom was set as 0.13 × 0.13 × 0.13 cm3. The true geom-
etry configuration of the phantom is shown in Figs. 2(a1) and
2(a2). The red circle in Fig. 2(a2) denotes the position of the
reconstructed FMT/CT slice. The second column of Fig. 2
denotes the results of Eq. (4) (i.e., DCT-based reweighted L1-
norm regularization function). The third column is obtained by
solving Eq. (12) (i.e., DCT-based L1-norm regularization func-
tion without reweighted strategy). The fourth and fifth columns
correspond to Eq. (11) (i.e., the regular L1-norm regularization

Fig. 1 Schematic top view of the dual-modality fluorescence molecu-
lar tomography (FMT)/computed tomography (CT) system.

Fig. 2 Reconstruction results of the phantom experiments with 18 projections. (a1) Slice and (a2) three-
dimensional (3-D) rendering of the true fluorescent targets. (b1) and (b2) Slice and 3-D results of DCT-
based reweighted L1-norm regularization. (c1) and (c2) Slice and 3-D results of DCT-based L1-norm
regularization without reweighted strategy. (d1) and (d2) Slice and 3-D results of regular L1-norm regu-
larization. (e1) and (e2) Slice and 3-D results of classic L1-norm regularization. The red circle in (a2)
denotes the position of the FMT/CT slice. (f) Each slice is composed of the reconstructed FMT result
fused with corresponding CT slice. Each image is normalized by its maximum.
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function) and Eq. (13) (i.e., the classic reweighted L1-norm
regularization function), respectively.

By overlaying the reconstructed FMT results onto the corre-
sponding CT slices in Figs. 2(b1), 2(c1), 2(d1), and 2(e1), it
can be seen that all the L1-norm regularizations can accurately
locate the fluorescence targets. In order to further demonstrate
the performances of different regularization techniques, the pro-
files along the white dotted lines in Fig. 2 are shown in Fig. 3.
In Fig. 2, it can be seen that the lines in FMT cross-sections
pass through the centers of the reconstructed and true targets
at the same time. In Fig. 3, it can be seen that the profiles cor-
responding to all L1-norm regularizations have similar FWHMs.
This means that these employed L1-norm regularizations can

reconstruct the targets with similar spatial resolution. For all
the profiles, the peak positions (corresponding to the center of
the reconstructed target) match the true locations, which mean
that all the employed L1-norm regularizations can obtain a high
localization accuracy.

Although the cross-section results and profiles demonstrate
similar performances of different methods, the comparison
among the reconstructed 3-D images [Figs. 2(b2), 2(c2), 2(d2),
and 2(e2)] demonstrates the performance differences of different
L1-norm regularization strategies. The comparison between
Figs. 2(b2) and 2(d2) validates the superior performance of
the DCT-based reweighted L1-norm regularization over the
regular L1-norm regularization in terms of noise suppressing.
The comparison between Figs. 2(b2) and 2(c2) clarifies the
fact that the better performance of the proposed DCT-re-L1
algorithm mainly relies on the proposed DCT-based reweighted
strategy rather than the simple DCT-based regularization.
Through the comparison between Figs. 2(d2) and 2(e2), it can
be seen that the classic reweighted L1-norm regularization has
superiority over the regular L1-norm regularization in terms of
noise suppressing.

In order to further demonstrate the performance of the pro-
posed DCT-re-L1 algorithm, limited-projection FMT recon-
structions with nine, four, and three projections were carried
out, respectively. Since the results obtained with Eq. (13) out-
performs the results obtained with Eqs. (11) and (12) in terms of
noise suppressing [Figs. 2(e2), 2(d2), and 2(c2)], only the DCT-
based and classic reweighted L1-norm regularizations are com-
pared. Figure 4 shows the results for different reweighted
L1-norm regularizations with nine, four, and three projections,
where the dimensions of the corresponding sensitive matrix W
were 1340 × 6196, 678 × 6196, and 495 × 6196, respectively.
The reconstructed slices shown in Figs. 4(b1) and 4(d1) dem-
onstrate the good localization accuracy of the classic reweighted
L1-norm regularization for limited-projection FMT with nine

Fig. 3 Intensity profiles along the white dotted lines in the cross-
sections of Fig. 2.

Fig. 4 Reconstruction results of the phantom experiments with nine, four, and three projections. Slices
(a1, c1, e1) and 3-D (a2, c2, e2) denote the results reconstructed by the DCT-based reweighted L1-norm
regularization. Slice (b1, d1, f1) and 3-D (b2, d2, f2) are the results reconstructed by the regular
reweighted L1-norm regularization. Each slice is composed of the FMT result fused with CT slice.
Each FMT image is normalized by its maximum.
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and four projections. However, Fig. 4(d2) shows that the 3-D
image reconstructed by the classic reweighted L1-norm regulari-
zation is contaminated with noise when the number of FMT pro-
jections decreases to 4. That is partly because the corresponding
sensitive matrix W becomes severely underdetermined for the
four-projection FMT reconstruction. In contrast, the results
shown in Figs. 4(a1), 4(a2), 4(c1), and 4(c2) demonstrate that
the DCT-based reweighted L1-norm regularization still shows
good performances in terms of localization accuracy and noise
suppressing, even for the four-projection FMT reconstruction.
Compared with the 18-projection FMT, four-projection FMT
only needs about one-fifth of the data-acquisition time to obtain
high-quality reconstruction results. Additionally, because the
number of measurements is reduced, the memory consumption
is also reduced for the four-projection FMT. The reconstruction
time of the DCT-based reweighted L1-norm regularization with
18 and 4 projections is 314 and 194 s, respectively. By contrast,
the reconstruction time of the classic reweighted L1-norm

regularization with 18 and 4 projections is 305 and 185 s,
respectively. The 3-D DCT transform in Eq. (4) consumes
more time in the reconstruction using the DCT-based regulari-
zation. Figures 4(e1), 4(e2), 4(f1), and 4(f2) show that the results
of both the reweighted L1-norm regularizations have low locali-
zation accuracy and much noise when the number of FMT pro-
jections decreases to 3, which is caused by the insufficient
fluorescence measurements used in the reconstruction process.

In order to better analyze the performance of the DCT-based
and classic reweighted L1-norm regularizations when the num-
ber of projections is reduced (i.e., from 18 to 3), the correspond-
ing profiles along the white dotted lines in Figs. 2 and 4 are
shown in Fig. 5. It can be seen that the width of the valleys
decreases when the number of projections is reduced. This
means that the smaller number of projections deteriorates the
spatial resolution, especially when the number of projections
is reduced to three [Fig. 5(d)]. As shown in Figs. 4(c1), 4(d1),
4(e1), and 4(f1), although the lines in FMT cross-sections pass

Fig. 5 Intensity profiles along the white dotted lines in the cross-sections reconstructed by the DCT-
based and classic reweighted L1-norm regularizations with different number of projections. The profiles
in (a) correspond to Figs. 2(b1) and 2(e1) (18 projections). The profiles in (b) correspond to Figs. 4(a1)
and 4(b1) (nine projections). The profiles in (c) correspond to Figs. 4(c1) and 4(d1) (four projections). The
profiles in (d) correspond to Figs. 4(e1) and 4(f1) (three projections).
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through the centers of true targets, the centers of the recon-
structed targets deviate these lines. This indicates that the centers
of the reconstructed targets deviate from the true target centers.

In order to quantitatively compare the localization accuracy,
the center-localization errors corresponding to different
reweighted L1-norm regularizations with different numbers of
projections are listed in Table 1. As shown, the localization
accuracy declines when the number of projections is reduced.
When the number of projections decreases from nine to four,
the localization errors have a dramatic increase.

In order to quantitatively analyze the performance of differ-
ent reweighted L1-norm regularizations in terms of noise sup-
pressing, the signal-to-noise ratio (SNR) was calculated as

SNR ¼ 10 lg
kXðrtargetÞk2
kXðrbackÞk2

; (15)

where XðrtargetÞ and XðrbackÞ denote the reconstructed fluoro-
phore distribution at target and background locations, respec-
tively. The target and background location was defined by
the true fluorophore distribution shown in Figs. 2(a1) and 2(a2).
The corresponding SNR values for FMT reconstruction with 18,
9, 4, and 3 projections are calculated and listed in Table 2. As
shown, the results reconstructed by the DCT-based reweighted
L1-norm regularization have higher SNRs than those recon-
structed by the classic reweighted L1-norm regularization, espe-
cially when four projections are used for FMT reconstruction.
In addition, Table 2 shows that there is a big drop of the SNR
values corresponding to both DCT-based and classic reweighted
L1-norm regularizations when the number of projections
decreases from nine to four. In addition to the reconstructed
noise, such a drop is partly caused by the slight localization

errors (shown in Table 1) and the reduced spatial resolution
(shown in Fig. 5), when the number of projections used in
FMT reconstruction is reduced to four.

3.2 In vivo Mouse Experiments

In order to further evaluate the performance of the proposed
algorithm in practical applications, in vivo mouse experiments
were conducted under the protocol approved by the Institutional
Animal Care and Use Committee of Tsinghua University.
Experiments were performed with the dual-modality FMT/CT
system shown in Fig. 1, where the CT images were obtained
to examine the reconstruction accuracy. A nude mouse was
anesthetized by an abdominal cavity injection of 10% chloral
hydrate. In order to mimic the fluorescent target, a transparent
glass tube (0.4 cm outer diameter) filled with 1.3 μM ICG was
embedded into the abdomen of the mouse. The fusion result of
the two dimensional (2-D) fluorescence and white-light images
is shown in Fig. 6(a), where the two red dotted lines determine
the FMT reconstruction region. The 3-D solid geometry of the
mouse is reconstructed from 72 white light images and is shown
in Fig. 6(b),16 where the red line corresponds to the position of
the CT transverse reconstruction result shown in Fig. 6(c).
In addition, Fig. 6(d) shows the CT-based 3-D rendering of
the implanted tube and skeleton inside the mouse surface in
order to clarify the morphology of the reconstructed fluores-
cence tube. Since the tube was embedded in the abdomen of
the mouse, the optical properties were assumed to be homo-
geneous, and the absorption and reduced scattering coefficients
were set as 2.38 × 10−2 cm−1 and 10.3 cm−1, according to
Ref. 17.

Table 1 Center-localization errors (cm) of the results reconstructed
by different reweighted L1-norm regularizations with different num-
bers of projections for the phantom experiments.

Number of
projections

Classic reweighted
L1 regularization

DCT-based reweighted
L1 regularization

18 0.026 0.023

9 0.031 0.026

4 0.092 0.061

3 0.127 0.123

Table 2 Signal-to-noise ratio (SNR) of the results reconstructed by
different reweighted L1-norm regularizations with different numbers of
projections for the phantom experiments.

Number of
projections

Classic reweighted
L1 regularization

DCT-based reweighted
L1 regularization

18 11.5 12.1

9 9.7 11.2

4 3.5 8.4

3 −1.6 0.1

Fig. 6 In vivo mouse experiments. (a) Fusion of the white-light and
fluorescence images. The region between the two red dotted lines
is used for FMT reconstruction. (b) 3-D mouse solid geometry recon-
structed from 72 white light images, where the red line indicates
the position of the reconstructed CT slice (c). (d) Reconstructed
CT-based 3-D rendering of the implanted tube and skeleton inside
the mouse surface.
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In order to compare the quality of the results reconstructed
by different L1-norm regularizations with a limited number of
projections, the excitation-light and fluorescence-light measure-
ments collected at four projection angles were used in the
FMT reconstruction. The dimensions of the corresponding sen-
sitive matrix W were 563 × 5553, and the discretized mesh
resolution was set as 0.1 × 0.1 × 0.1 cm3. Figure 7 shows the
reconstructed 3-D images and cross sections corresponding to
the red line in Fig. 6(b). The first column of Fig. 7 denotes the
results reconstructed by the DCT-based reweighted L1-norm
regularization and the reconstruction time is 222 seconds.
The second column is obtained by the DCT-based L1-norm
regularization without the reweighted strategy and the
reconstruction time is 274 s. The third and fourth columns cor-
respond to regular L1-norm and classic reweighted L1-norm
regularizations, and the corresponding reconstruction times
are 122 and 149 s, respectively. Compared with the regular
L1-norm and classic L1-norm regularizations, the 3-D DCT
transform in the DCT-based regularizations consumes more
reconstruction time. The first row of Fig. 7 denotes the fusion
FMT/CT slices for different L1-norm regularizations.

In order to further demonstrate the localization accuracy of
different L1-norm regularizations, the profiles along the white
dotted lines in Fig. 7 are shown in Fig. 8. It can be seen that
most of the reconstruction-target profiles match the profiles
of the true target, though there are some deviations. For this
four-projection in vivo FMT reconstruction, the average
center-localization error is about 0.09 cm. Deviations of the
center of the fluorescent targets reconstructed by different
L1-norm regularization strategies may be caused by the inevi-
table forward-model error and geometrical approximation, such
as the rough point-to-point mapping between the captured two
dimensional (2-D) CCD images and the light flux on the 3-D
mouse surface.

Performances of different L1-norm regularization strategies
can be evaluated by the 3-D reconstruction results in Fig. 7.
Compared with the result reconstructed by the DCT-based
reweighted L1-norm regularization [Fig. 7(a2)], the fluorescent
target reconstructed by the DCT-based L1-norm regularization
without the reweighted strategy [Fig. 7(b2)] is surrounded by
a slight noise on the 3-D surface. This comparison clarifies
the fact that the good noise-suppressing ability of the proposed
DCT-re-L1 algorithm mainly relies on the proposed DCT-based
reweighted strategy rather than the simple DCT-based regulari-
zation. Compared with the fluorescent target reconstructed by

Fig. 7 Reconstruction results of the in vivo mouse experiments with four projections. (a1) and (a2) Slice
and 3-D results of DCT-based reweighted L1-norm regularization. (b1) and (b2) Slice and 3-D results of
DCT-based L1-norm regularization without reweighted strategy. (c1) and (c2) Slice and 3-D results of
regular L1-norm regularization. (d1) and (d2) Slice and 3-D results of the classic L1-norm regularization.
Each slice corresponds to the position denoted by the red line in Fig. 6(b) and is composed of the recon-
structed FMT result fused with the CT slice in Fig. 6(e). Each FMT image is normalized by its maximum.

Fig. 8 Intensity profiles along the white dotted lines in the cross-sec-
tions of Fig. 7.
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the DCT-based L1-norm regularization [Figs. 7(a2) and 7(b2)],
the target reconstructed by the general L1-norm regularization
[Figs. 7(c2) and 7(d2)] has some distortion, which demonstrates
the good performance of the DCT-based L1-norm regularization
in terms of reconstruction accuracy with regard to the morphol-
ogy. This is because 3-D DCT can effectively utilize the high
degree of space correlation to retain the main morphology of
the fluorescent targets. In addition, because DCT can effectively
distinguish the noise information, the proposed DCT-based
reweighted strategy has a better performance than the classic
reweighted strategy in terms of noise suppressing, which can
be demonstrated by the comparison between Figs. 7(a2) and
7(d2).

For the in vivo mouse experiments with four projections, the
SNR values of the results reconstructed by different L1-norm
regularization strategies are listed in Table 3 to quantitatively
evaluate the performance of the proposed algorithm. The target
and background location was approximated based on the 3-D
CT fluorophore distribution, as shown in Fig. 6(d). As shown
in Table 3, the result reconstructed by DCT-based reweighted
L1-norm regularization has the highest SNR among different
L1-norm regularizations, which demonstrates the good perfor-
mance of the proposed algorithm in terms of noise suppression.

4 Discussion
In this paper, the FMT inverse problem is formulated as a
constrained nonlinear least-square problem with a DCT-based
reweighted L1-norm regularization and is solved by the pro-
posed DCT-re-L1 algorithm. In each iteration, the regulariza-
tion-parameter matrix is adaptively updated based on the
values of the DCT coefficients. In order to suppress the noise
reconstructed in each iteration, a large regularization parameter
(i.e., heavy penalty) is assigned to the small DCT coefficient
which usually corresponds to the high-frequency noise. Based
on the non-negative region of the previous iterative results, the
permission region is adaptively updated, which can expedite the
convergence and reduce the memory consumption. In order to
clarify the advantages of the proposed DCT-based reweighted
L1-norm regularization, different L1-norm regularization meth-
ods are employed, including the regular L1-norm regularization,
the DCT-based L1-norm regularization without the reweighted
strategy and the classic reweighted L1-norm regularization.
In order to validate the feasibility of the proposed algorithm
for FMT reconstruction, physical phantom and in vivo mouse
experiments with a limited number of projections have been
conducted. The results demonstrate the good performance of
the proposed algorithm in terms of noise suppressing and
reconstruction accuracy with regard to the morphology, because
3-D DCT can effectively distinguish the noise information and

take advantage of the 3-D space correlation to retain the main
morphology of the fluorophores. In addition, in vivo mouse
experiments show that the four-projection FMT reconstruction
based on the proposed DCT-based reweighted L1-norm regu-
larization can obtain satisfactory reconstruction results with
reduced data acquisition time, which contributes to resolving
dynamic biological processes in vivo.

As shown in the phantom and in vivo mouse experiments,
the 3-D DCT transform causes much time consumption for
the FMT reconstruction using the proposed DCT-re-L1 algo-
rithm. In order to further increase the computational speed,
fast DCT algorithms (e.g., through fast Fourier transform) can
be employed.18 The in vivo mouse experiments in this paper
show that there are some localization errors in the FMT
reconstruction. In order to further improve the reconstruction
accuracy with regard to localization and morphology for
nonconvex fluorescent targets, the forward model with hetero-
geneous optical properties based on the radiative transfer equa-
tion, simplified spherical harmonics approximation or Monte-
Carlo is necessary.11,19 Additionally, a more accurate mapping
model between the 2-D CCD measurements and the 3-D surface
photon flux is needed.20 The proposed DCT-based reweighted
L1-norm regularization can potentially be utilized in FMT
reconstruction with these improved models.

In order to validate the feasibility of the proposed algorithm
in practical applications, future work will be focused on in vivo
small animal experiments with probe-targeted tumor models.
The limited-projection FMT will be applied to the in vivo
experiments in order to resolve the tumor metabolism process.
In addition, we will incorporate other forms of sparsity-
promoting regularization, such as TV, in order to achieve
high-quality reconstruction for large (or nonsparse) objects
with limited projections.

The focus of this work is the improved SNR using the pro-
posed DCT-re-L1 algorithm when the number of projections is
reduced. From the reconstruction results of the phantom
experiments, it can be seen that the spatial resolution of the
FMT reconstruction declines when the number of projections
is reduced. In addition to the number of projections, the
reconstruction-image resolution of the FMT system also
depends on other experimental parameters such as the arrange-
ment of the excitation-light source, the SNR of the CCD cap-
tured images, the thickness of the tissues, the wavelength of the
emitted fluorescence light, and the reconstruction algorithms.
As pointed out in Ref. 21, compared with L2 regularization, L1
regularization can obtain reconstruction results with higher
spatial resolution. The performance of the proposed DCT-re-
L1 method in terms of spatial resolution will be investigated
in our future work.
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Table 3 SNR of the results reconstructed by different L1-norm reg-
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Different L1-norm regularizations SNR

DCT-based reweighted L1-norm regularization 7.4

DCT-based L1-norm regularization without reweighted strategy 3.9

Regular L1-norm regularization 5.5

Classic reweighted L1-norm regularization 3.6
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