
Contrast improvement of continuous
wave diffuse optical tomography
reconstruction by hybrid approach
using least square and genetic
algorithm

Rusha Patra
Pranab K. Dutta



Contrast improvement of continuous wave diffuse
optical tomography reconstruction by hybrid
approach using least square and genetic algorithm

Rusha Patra* and Pranab K. Dutta
Indian Institute of Technology Kharagpur, Department of Electrical Engineering, Kharagpur, West Bengal 721302, India

Abstract. Reconstruction of the absorption coefficient of tissue with good contrast is of key importance in func-
tional diffuse optical imaging. A hybrid approach using model-based iterative image reconstruction and a genetic
algorithm is proposed to enhance the contrast of the reconstructed image. The proposed method yields an
observed contrast of 98.4%, mean square error of 0.638 × 10−3, and object centroid error of (0.001 to 0.22) mm.
Experimental validation of the proposed method has also been provided with tissue-like phantoms which shows
a significant improvement in image quality and thus establishes the potential of the method for functional diffuse
optical tomography reconstruction with continuous wave setup. A case study of finger joint imaging is illustrated
as well to show the prospect of the proposed method in clinical diagnosis. The method can also be applied to the
concentration measurement of a region of interest in a turbid medium. © 2015 Society of Photo-Optical Instrumentation
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1 Introduction
Over the last few decades, there has been considerable research
on optical imaging. The basic principle involves the transillumi-
nation of a tissue using a near-infrared (NIR) light source and
the reconstruction of the optical properties (such as optical
absorption, scattering, and so on) from the intensity measure-
ments along the boundary. One of the main focuses of these
studies is that in the NIR range, the depth of penetration is mod-
erate and the absorption coefficient changes with concentration
of different tissue constituents like hemoglobin, water, protein,
fat, and so on. Hence, a mapping of these features can be
inferred from the reconstructed absorption coefficient, though it
is qualitative in many cases. In diffuse optical tomography
(DOT), the photon diffusion in the medium is modeled and the
optical properties of the medium are reconstructed from the
measurements at the boundary. Some potential applications of
DOT includes brain imaging,1 breast tumor detection,2 monitor-
ing the condition of finger joints,3 and so on. It is evident from
the basic principle that DOT is generally an ill-posed and under-
determined imaging problem. As the photons are diffused in the
tissue at NIR, DOT is capable of imaging a larger volume. At the
same time, due to the high scattering of photons, the inverse
problem of DOT is nonlinear. These factors lead to theoretical
as well as practical difficulties in finding a unique and reliable
solution. Various approaches for DOT exist depending on the
measurement type, source-detector arrangement, and image
reconstruction algorithm. Extensive studies have been carried
out on frequency and time domain DOT. However, these require
sophisticated hardware, a large time for data acquisition, and
high cost. In this study, continuous wave (CW) measurement
with transmittance geometry is considered. CW measurement
employs CW light sources, simple detectors like photodiodes,

and so on, which make the setup simple and of low cost. The
image quality of CWDOT depends on the source-detector
density, whereas frequency domain DOT has medium image
quality and time domain DOT has the highest image quality.
Therefore, in the present study, the improvement of the image
quality of CWDOT has been considered. The reconstruction of
the absorption coefficient is focused only with a known scatter-
ing coefficient.

Solution of the DOT inverse problem was reported first in
1993. An iterative image recovery algorithm has been proposed
where the forward problem was solved by using finite element
method.4 The advances in the reconstruction as well as instru-
mentation in the last two decades have been summarized in
the review article by Arridge and Schotland.5 The nonlinear
inverse problem can be linearized by expansion and approxima-
tion, where the functional relationship between the measure-
ments and the inputs is approximated as a sparse matrix. Due
to sparsity of the linearized inverse problem, compressed sens-
ing,6 and different variant of MUSIC algorithms7 have been
applied for DOT reconstruction. Use of neural network for
DOT reconstruction has been reported as well.8 Though these
methods provide acceptable spatial accuracy and resolution,
the reconstructed absorption coefficients are not always quanti-
tatively the same as the actual one resulting in a low-contrast
reconstructed image. The contrast is extremely important in func-
tional DOT for the mapping of the absorption coefficient to the
concentration of oxygenated and deoxygenated hemoglobin.
Recently, contrast improvement of the CW-DOT reconstruction
using lp norm9,10 or basis pursuit deconvolution11 has been
reported as well. In Ref. 9, a linearized l1-based framework
has been provided for dynamic CW-DOT, whereas in Ref. 10,
a systematic comparison of differentlp (0 < p < 1)minimization
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algorithms are discussed for DOT imaging. In Ref. 11, CW-DOT
image reconstruction is improved by using basic pursuit decon-
volution. Along with the conventional optimization methods,
evolutionary algorithms like the genetic algorithm (GA) are
also used in DOT reconstruction. GA has been introduced for
estimating the optical properties of homogenous media12–14

where the number of unknowns is only 3 (global absorption
and scattering coefficients, and anisotropy factor). For hetero-
geneous media, the number of unknowns will be of the order
of the total number of finite elements which leads to highly
expensive computations. The use of GA for reconstructing
heterogeneity has been reported in Refs. 15 and 16. In
Ref. 15, the absorption coefficient is considered as a Gaussian
shaped perturbation and only a single inclusion is considered,
which can include only a few special cases. In Ref. 16, both single
and double inclusions are considered for reconstruction.
However, the number of inhomogeneities is assumed to be
known in the simulation results. This has been shown as the
proof of convergence of GA onto a good solution. A two-step
approach that takes advantage of both global optimization and
gradient techniques to solve the DOT inverse problem has
been shown in Ref. 17. The method utilizes the fitted values
of the unknown target parameters estimated from GA
as the initial values for the conjugate gradient reconstruction.
Prior to imaging, the desired area was examined using ultra-
sonography (USG) and the locations of inclusions (mean and
standard deviation) are computed from B-scan images of USG.
Here, usage of another imaging modality and detection circuit
of the frequency domain DOT system makes the instrument
expensive.

Considering all these limitations, a hybrid approach using
both the gradient based technique and evolutionary method
is proposed here for CW-DOT reconstruction. The main objec-
tive is to reconstruct the region of absorption heterogeneities in
a nearly homogeneous background with accurate spatial loca-
tion as well as absorption coefficient values. In the proposed
hybrid approach, the absorption coefficients are initially recon-
structed using a regularized least square method, then the recon-
structed coefficients of the region of heterogeneities are refined
using GA. The performance of the proposed method has been
assessed quantitatively and also compared with those of
existing methods. A comprehensive experimentation has also
been carried out with a tissue-like phantom to validate the pro-
posed method. Significant improvement of image quality is
achieved, which indicates the potential of the proposed method
in functional imaging. Finally, imaging of a transverse section
of human index distal interphalangeal (DIP) is demonstrated as
an example of clinical application for detecting osteoarthri-
tis (OA).

The organization of this paper is as follows. In Sec. 2, optical
characteristics of tissue as well as photon propagation and pro-
posed DOT image reconstruction are described. Experimental
setup and phantom preparation are described in Sec. 3.
Simulation, experimental as well as DIP imaging results, and
comparison of performance evaluation are discussed in Sec. 4
followed by concluding remarks in Sec. 5.

2 Materials and Methods

2.1 Optical Characteristics of Biological Tissue

In NIR, the light tissue interaction is dominated by the optical
properties of tissue, such as absorption, scattering, and so on.

The absorption coefficient (μa) depends on the wavelength of
light used and the concentration of hemoglobin or other con-
stituents. A typical value of absorption coefficient in biological
tissue is 0.01 to 0.5 cm−1.18 Scattering (μs) occurs due to the
mismatch of the refractive indices between the particles and
the surrounding medium; typical scattering coefficient value
in tissue is 20 to 200 cm−1.18 While considering scattering,
the anisotropy factor (g) has to be taken into account. It is quan-
tified as the average cosine of the angle of scattering and its
value in tissue is 0.8 to 0.98.18 The scattering coefficient and
anisotropy factor produce another parameter called the reduced
scattering coefficient that is defined by ð1 − gÞμs. Since the scat-
tering coefficient is significantly greater than the absorption
coefficient (μs ≫ μa), the tissue will act as scattering dominant
regime, i.e., turbid media. Therefore, light gets diffused in the
medium and due to low absorption, NIR light can penetrate
more depth compared to that of visible light.

2.2 Modeling of Photon Propagation and Image
Reconstruction

As tissue acts like turbid media in NIR, the photon propagation
can be modeled by diffusion approximation of the radiative
transport equation as given by19

− ∇ · D∇Φðr; tÞ þ μaΦðr; tÞ þ 1

v
∂Φðr; tÞ

∂t
¼ Sðr; tÞ; (1)

where Φðr; tÞ is the photon fluence rate, Sðr; tÞ is the equivalent
isotropic source, and D ¼ 1∕3½μa þ ð1 − gÞμs� is the diffusion
coefficient. It should be noted that this approximation requires
a highly scattering medium and the distance between source and
detector should be much greater than one mean transport path to
enhance the number of scattering events. Here, a single isotropic
point source and mixed boundary conditions are considered.
The mixed or Robin boundary condition can be given as Φþ
2DÂ n̂ · ð∇ΦÞ ¼ 0 where Â is the Fresnel reflection parameter
for the medium to air. Considering the tissue refractive index as
1.4,20 the value of Â is 2.737. As the analytical solution of
Eq. (1) is computationally expensive, numerical solution using
finite element method with a Galerkin weighted residual
approach21 is used. Delaunay triangulation with simplex tri-
angular elements is applied for meshing. The total cross-sec-
tional area is divided into around 300 triangular finite elements
and the basis functions are those such as the impulse function. In
the steady-state form of Eq. (1), the term containing the time
derivative of the photon fluence rate is omitted. This solution
of Φðr; tÞ when D, μa, and Sðr; tÞ are known, is called the for-
ward problem. In image reconstruction, Φðr; tÞ and Sðr; tÞ are
known and D and μa are estimated, which is called the inverse
problem. Since direct inversion of Eq. (1) is not possible and
DOT has inherent nonlinearity and ill-posedness, a hybrid
approach using both the gradient based method and evolutionary
method is implemented here. At first, the reconstruction is done
by using a model based iterative method.22 Starting with some
initial guess, the forward problem is solved as described above
and predicted measurements are computed. Subsequently, the
error between the actual measurements and predicted measure-
ments is minimized iteratively to update the optical parameters.
Finally, the parameters are refined using GA and α-trimmed
mean filtering. α-trimmed mean filtering is used mainly to
reduce the effect of artifacts resulting due to the triangulation
procedure used in the finite element solution with a relatively
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fewer number of source and detectors. The complete block dia-
gram of the method is given in Fig. 1 and described in subsec-
tions 2.2.1 and 2.2.2.

2.2.1 Iterative reconstruction

Let us consider the forward problem as a function of absorption
and scattering coefficients, i.e., Gðμa; μsÞ ¼ Ma where Gð Þ is
the forward function and Ma is the measured detector inten-
sities. Now the coefficients can be considered as the summation
of the background value and the perturbation. Hence, the for-
ward problem can be written as Gðμ0a þ Δμa; μ0s þ ΔμsÞ ¼ Ma.

Now applying the Taylor expansion on this function
around ðμ0a ; μ0s Þ, and considering up to the first order term,
we obtain

Ma ¼ Gðμ0a ; μ0s Þ þG 0ðμ0a ; μ0s Þ · ½Δμa;Δμs�; or

ΔM ¼ J½Δμa;Δμs�;
(2)

where ΔM ¼ Ma −Gðμ0a ; μ0s Þ, i.e., the change in intensity due
to perturbation in absorption and scattering coefficients and J ¼
G 0ðμ0a ; μ0s Þ is the derivative of the forward problem which can be
called Jacobian as well. Jacobian gives the sensitivity of the out-
put measurements corresponding to the variation of absorption
and scattering coefficients of each element. Here, the Jacobian
has been computed using the perturbation method. The pertur-
bation of the optical coefficients can be obtained by the inverse
of the Jacobian multiplied with the change in the detector inten-
sity. However, due to the numerical condition of the Jacobian,
the perturbed coefficient values are evaluated iteratively using
a least squares method instead of direct matrix inversion. The
objective function for least square is

Obj ¼ kJ½Δμa;Δμs� − ΔMk2; (3)

where k k2 denotes the L2 norm. Using Tikhonov regularization
to make the matrix diagonally dominant and invertible, the equa-
tion becomes

½JTJ þ λI�½Δμa;Δμs� ¼ JTΔM; (4)

where λ is the regularization parameter which can be constant or
varying. In this case, it is taken as constant. The value of λ is
chosen in such a way as to improve the bandwidth of the matrix
for efficient computation of the inverse, i.e., to make it diago-
nally predominant. The value of λ is estimated using the L-curve
method.23 Here, the initial guess values are chosen randomly
within the limit of absorption and scattering coefficients and
both the parameters are reconstructed. However, only the
absorption coefficients are refined in the next stage.

2.2.2 Coefficient refining using genetic algorithm

The contrast enhancement is achieved by refining the parame-
ters (absorption coefficients) using GA followed by α-trimmed
mean filtering. After model based iterative reconstruction, as
depicted above, the reconstructed optical parameters of the sam-
ple, having a value higher than a threshold, are refined using
GA. The reconstructed absorption coefficient values which
are greater than 50% of the maximum values or the top 30%
coefficient values, whichever is maximum, are considered for
further refinement. GA is a type of evolutionary algorithm
which yields an optimal value based on the search population.24

It is quite successful in the seemingly unknown distribution of
a solution in the last few decades. The algorithm uses the prin-
ciples which are the same as natural genetics. Unlike a conven-
tional search algorithm, GA generally starts with a random set of
solutions. Here, GA starts with the results of the iterative
reconstruction technique. The basic steps of GA and the selec-
tion of parameters have been discussed below.

GA starts with a fixed population of candidate solutions and
each of the solutions is evaluated with a fitness function which is
the measure of the candidate’s potential as a solution. Each indi-
vidual of the population, called a chromosome, is a binary coded
string which is mapped to a scalar value through the fitness func-
tion. The fitness function has been computed and minimized to
obtain the optimum solution and is finally decoded into a real
number of the original feature space. Genetic operators, namely
selection or reproduction, cross-over and mutation, are realized
to simulate the natural evolution. In selection or reproduction,
the fitter solutions are duplicated to replace the bad or less fit
solutions in the population while keeping its size constant.
Cross-over and mutation are used to generate a new population.
In cross-over, two strings are randomly chosen and an exchange
of substrings takes place between them to generate a new string.
In mutation, the bits of the strings are randomly changed. These
three operators are used iteratively until either the fitness func-
tion value is under a threshold value or a specific number of
iterations has been done.

The fitness function is computed on the mean square error as
given by θ ¼ kMa − fðx 0Þk2 where Ma is the actual detector
intensity, fðx 0Þ is the forward problem function calculated for
x 0, x 0 is the optical absorption coefficient assigned to the
corresponding chromosome, and k k2 denotes the L2 norm.
Initially, N number of candidate solutions (chromosome) are
generated, which represent the initial absorption coefficients.
The input to the algorithm is a point set P ¼ ½Aiji ¼ 1∶N�
where parameter vector Ai represents the absorption coefficients
assigned to a candidate solution. The initial Ai values are
obtained from the least square reconstructed image. The basic
GA is depicted below.

Fig. 1 Block diagram of the proposed methodology of diffuse optical
tomography.
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Algorithm:
Input: Optical parameters from least square

reconstruction
Output: Refined optical parameters for the final

reconstructed image
Begin:

Initialize population size N, no. of variables x, cross-
over rate Pco, mutation rate Pmu, desired fitness θ, and
n number of x-bit chromosome;
do

generate m offspring from the parent population con-
sidering Pco, Pmu

solve forward problem for each offspring
compute the fitness value of each of them and rank
accordingly (i.e., the smallest fitness corresponds to
rank 1)
select first N chromosomes

end until any chromosome’s fitness value exceeds the
desired fitness
chromosome with the highest rank is the optimal
solution

End

Here, the parameters of GA are the population size, mutation
rate, lower and upper bounds of feature values, and so on. The
population size depends on the number of variables and it is
taken as about four times the number of variables. Since least
square is stuck near some local or global minima, a high-muta-
tion rate is chosen which ensures 80% of the old population will
migrate to the new population. The lower bound is the minimum
value of the reconstructed absorption coefficient by least square
and the upper bound is considered a very high value of the
absorption coefficient (a typical value of 0.8 mm−1). The iter-
ation of these steps will continue until either the fitness function
is steady or a particular number of iterations is reached. The
maximum allowable number of iterations is 500 and the limit
of cumulative change in the fitness function is 0.00001.

Finally, α-trimmed mean filtering of the reconstructed image
is done. Due to the small number of the source-detector and
quantization effects, the shape of the inclusion is not smooth.
Therefore, α-trimmed mean filtering is used for smoothing the
image. Based on order statistics, the filter varies between mean
and median according to the value of alpha (α). Depending upon
the mask size, the surrounding neighborhood pixel values are

sorted in ascending order and removing the first (α∕2) and
last (α∕2) values, the mean is taken for the remaining values.
The filtered output is the final reconstructed DOT image.

3 Experimental Setup and Sample
Preparation

The phantom used in the experiment is cylindrical in shape with
dimensions 25 mm × 45 mm (radius × height with center at ori-
gin) bearing double inclusions. The background material was
composed of 2% agarose gel (Cat no. A9539, Sigma Aldrich)
containing 2∶1 (v/v) agarose and cornstarch. An appropriate
amount of agarose and distilled water was mixed. The mixture
was heated in order to dissolve the agarose and obtain a trans-
parent liquid followed by addition of an appropriate amount of
cornstarch. Subsequently, the solution was poured into a cylin-
drical mold and allowed to cool. After that, the mold design
allowed the final cooled solidified phantom to bear small holes
[Fig. 2(a)]. Finally, a mixture of 1∶1 (v/v) blue India ink and
glycerin was poured into the holes to mimic optically high-
absorptive objects. The inclusions are of radius 4 mm with the
center at (0, 10) mm and of radius 3.5 mm with the center at
(6, −10) mm. Figure 2(a) represents the sample under study.
The absorption coefficient of the ink and glycerin mixture
was determined using a spectrophotometer (Jasco V630 spectro-
photometer). At the working wavelength, i.e., 680 nm, the aver-
age absorption coefficient of the ink and glycerin mixture was
found to be 0.52 mm−1. The experimentally estimated absorp-
tion and reduced scattering coefficients of agarose were 0.056
and 5 mm−1, respectively.

The overall experimental setup for data acquisition has been
depicted in Fig. 2(b). It can be divided into two modules; illu-
mination module and detection module. The main component of
the illumination module is a semiconductor laser operating at
680 nm. The power of the laser source is kept at around
2 mW, which is less than the maximum permissible exposure
limit. The laser, coupled with a multimode plastic fiber, illumi-
nates the sample continuously at different source locations by
rotating it around the sample along the xy-plane. The sample
is kept in a cylindrical chamber having holes on the outer surface
at different xy-planes. Multimode plastic fibers are placed
through these holes to measure the light intensity at the boun-
dary. These detector fibers are attached to a disk according to
their relative position and data acquisition is performed using
a CCD camera. A set of close-up lenses with focal length of
37.5 mm is placed in front of the camera lens to focus the incom-
ing light more closely and the intensity values are obtained from

Fig. 2 (a) The agarose sample and (b) experimental setup for data acquisition.
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the pixel intensity of the corresponding frame. The intensity of
the source is adjusted so that the maximum and minimum detec-
tor intensities are within the dynamic range of the CCD. The
source and detector nodes are placed alternately along the cir-
cumference of the imaging plane with equal spacing. Here, the
CW mode of measurement and a CCD camera are used to make
the system low-cost and portable. The source node position is
scanned over the surface and measurement is repeated to acquire
a set of data. Finally, the average of three sets of data is con-
sidered to reduce the zero-mean noise present in the measure-
ment. A total of seven sources and seven detectors were used
in the experiment hence, 49 measurement data for the
reconstruction of the cross section were obtained.

4 Results and Discussions

4.1 Simulated Targets

Circular numerical phantoms having different inclusions are
considered for this study. A circular phantom of radius
80 mm and center at (0, 0) mm having absorption and reduced
scattering coefficients of 0.025 and 2 mm−1, respectively, has
been used as background. In first case, the phantom has a single
inclusion of radius 20 mm with center at (20, −20) mm. The
absorption coefficient of the inclusion is 0.2 mm−1. A total
of eight source nodes and 18 detector nodes have been consid-
ered over the boundary for measurement purposes. The second
phantom has three inclusions of radius 15 mm with centers at
(0, 40) mm, (40, 0) mm, and ð−30;−30Þ mm, respectively.
All three inclusions have absorption coefficients of 0.5 mm−1

and have 16 source nodes and 16 detector nodes placed
alternately on the boundary. The third phantom has two inclu-
sions; one inclusion is of radius 12.5 mm with the center at
ð−25;−25Þ mm and the absorption coefficient is 0.2 mm−1.
The other inclusion is elliptical with a major axis of 40 mm,
minor axis of 25 mm, and center is at (28, 28) mm with an
absorption coefficient of 0.2 mm−1. Sixteen source and detector
nodes are considered alternately over the boundary. The fourth
phantom has two inclusions of radius 15 mm with centers at (22,
−22) mm and (−28, 34) mm, respectively. The two inclusions
have absorption coefficients of 0.2 and 0.3 mm−1, respectively,

and have 16 source nodes and 16 detector nodes placed alter-
nately on the boundary. The fifth phantom is similar to the agar-
ose phantom used in the experimental study. The radius is
25 mm with background absorption and a reduced scattering
coefficient of 0.056 and 5 mm−1, respectively. One inclusion is
of radius 4 mm with the center at (0, 10) mm and the other inclu-
sion is of radius 3.5 mm with the center at (6, −10) mm. The
absorption coefficient of inclusions is 0.52 mm−1 and a total of
seven source and seven detectors are placed alternately in an
equispaced fashion along the boundary. All five phantoms
are shown in Figs. 3(a)–3(e). The reason behind considering
a circular phantom is to make the algorithm direction invariant.
Also, the scattering coefficient is considered as known and con-
stant in this study because the scattering coefficient of biological
tissue is known to remain within a range and does not change
with different tissue components. However, it has been checked
that a change in the scattering coefficient may affect the
reconstruction of the absorption coefficient to some extent.

The boundary intensity measurement data for the numerical
phantoms are generated by solving the forward problem.
The steady state diffusion equation is solved by using the
Galerkin weighted residual method as discussed in Sec. 2.2.
The source light is incident at a source node and light intensities
reemitted from the surface are measured at the detector nodes.
Subsequently, the incident position of the source light is scanned
over the surface and the measurement of light intensity is
repeated to acquire a set of measurement data. This measure-
ment data is used to reconstruct the optical parameters of the
phantoms. The overall programming has been carried out in
MATLAB® environment (version 7.8.0) and the solution details
of the forward problem are given in our earlier paper.25

The optical absorption coefficients of the numerical phan-
toms have been reconstructed using a model based iterative
reconstruction and GA as described in Sec. 2.2. At first, model
based iterative reconstruction using the least square method is
used to update the coefficients. The typical value of the regu-
larized parameter (λ) is 6 × 10−6. The reconstruction of the
absorption coefficients of the first phantom using a regularized
nonlinear least square has been shown in Fig. 4(b), whereas the
actual absorption coefficient map is shown in Fig. 4(a). It is

Fig. 3 (a-e) Cross-sectional view of all five numerical phantoms.
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evident from Figs. 4(a) and 4(b) that though the spatial accuracy
is satisfactory, the contrast is lower than that of the original. To
improve the contrast of the inclusion, the parameters are further
refined using GA. This reduces the search domain of GA and
thus the computational complexity, achieving a better solution.
The other parameter values of GA are given below. The popu-
lation size is 150. After 25 generations, the migration of indi-
viduals will occur and 80% of the old population will migrate to
the new population. The maximum number of iterations is
500 and the tolerance for the cumulative change in the fitness
function is 0.00001. A lower bound of 0.025 mm−1 and an
upper bound of 0.8 mm−1 are used as constraints in GA. For
α-trimmed mean filtering, the mask size is ð5 × 5Þ pixels and
the value of α is 20. The final reconstructed absorption coeffi-
cient cross-section is given in Fig. 4(c). Although the size of
the inclusion is a little bigger than that of the original one,
the contrast has been improved from that of the least square
reconstruction. The quantitative reconstruction accuracy is dis-
cussed in Sec. 4.3.

Subsequently, the optical properties of the second numerical
phantom are reconstructed when having multiple inclusions.
The actual and the least square reconstructed absorption coef-
ficients are shown in Figs. 5(a) and 5(b), respectively. The loca-
tions of the inclusions are detected accurately, but the contrast is
lower than those of the actual ones. Therefore, to minimize the
total mean square error, the inclusions have more area than the
actual inclusions. Then the coefficients are refined using GA
with the same parameter values. Figure 5(c) depicts the final
reconstructed absorption coefficients with improved contrast.

Similarly, the optical absorption coefficients of the third
phantom are reconstructed as shown in Fig. 6. Figure 6(a) is
the actual phantom, whereas Figs. 6(b) and 6(c) are the recon-
structed image using the least square and least square with GA,
respectively. Although, the spatial accuracy is satisfactory in
Fig. 6(b), the contrast is very low. On the other hand, in
Fig. 6(c), both the spatial accuracy and contrast are improved.
Since the least square reconstructed image is used as the initial
condition for GA, the presence of noise is less. Therefore, the

Fig. 4 (a) Actual absorption coefficient map of first phantom and its reconstruction using (b) least square
method and (c) proposed method.

Fig. 5 (a) Actual absorption coefficient map of second phantom and its reconstruction using (b) least
square method and (c) proposed method.

Fig. 6 (a) Actual absorption coefficient map of third phantom and its reconstruction using (b) least square
method and (c) proposed method.
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outcome of GA is not affected by noise. As GA is susceptible to
noise, knowledge of the noise model is required for actual con-
vergence. However, since the initial condition has less noise and
it is not random, GA is immune to noise here.

The optical absorption coefficients of the fourth phantom
are reconstructed as shown in Fig. 7. Figure 7(a) is the actual
phantom, whereas Figs. 7(b) and 7(c) are the reconstructed
image using least square and least square with GA, respectively.
In Fig. 7(b), the contrast is very low and the size of the inclusion
is large, whereas the contrast and structural similarity are
improved in Fig. 7(c).

The optical absorption coefficients of the fifth phantom are
reconstructed as shown in Fig. 8. Figure 8(a) is the actual phan-
tom, whereas Figs. 8(b) and 8(c) are the reconstructed image
using least square and least square with GA, respectively.
It is evident from Fig. 8(b) that the contrast is very low, whereas
the contrast is improved in Fig. 8(c).

4.2 Phantom Experiment

A phantom experiment was performed to validate the proposed
method. The details of the experimental setup and phantom
preparation were already discussed in Sec. 3. The reconstruction
result for the experimental data is shown in Fig. 9. The actual
absorption cross-section of the experimental phantom is shown
in Fig. 9(a), with two inclusions. The least square reconstructed
absorption profile is shown in Fig. 9(b). It is evident from Fig. 9
(b) that along with the inclusion locations, a few boundary ele-
ments also have high-absorption coefficients. This may be due
to various errors in the experimental data like measurement
noise, a limited number of source and detectors, the effect of
ambient light, and so on. The coefficients are selected as
described above and are denoted by the area enclosed by
white curves in Fig. 9(c). The selected coefficients are refined
using GA followed by α-trimmed mean filtering. The final
reconstructed absorption profile is shown in Fig. 9(d). It is

obvious in Fig. 9(d) that after GA and α-trimmed mean filtering,
the high-absorption discrete elements on the boundary are
removed. The detected inclusion contours (white lines) are
shown in Fig. 9(e) and are qualitatively compared with the
actual inclusions. The blue and cyan colored blobs are the actual
inclusions. To quantify the quality of the reconstruction and
compare them with other methods, quantitative performance
analysis has been carried out as discussed in Sec. 4.4.

The proposed algorithm is validated with homogeneous
numerical simulations as well as an agarose phantom. The
reconstructed absorption coefficient map for the numerical and
experimental phantoms are shown in Figs. 10(b) and 10(d),
respectively, whereas the actual absorption profiles for the
same are shown in Figs. 10(a) and 10(c), respectively. It is evi-
dent from Figs. 10(b) and 10(d) that the proposed system can
also correctly reconstruct media with no inclusion as well. Some
small fluctuations are noticed in the reconstructed figures of
Figs. 10(b) and 10(d), however, it is worth mentioning that the
maximum of the scales in these figures is 0.1 and the fluctua-
tions are of magnitudes around 0.06, which is very close to the
background values of 0.056.

4.3 Clinical Application of Diffuse Optical
Tomography in Finger Joint Imaging

In recent years, optical imaging has been explored for detecting
OA.3,26,27 In previous studies, it has been shown that the absorp-
tion coefficients of a joint cavity increased in the case of OA
compared to healthy people. Therefore, we have studied the
DIP joint of human fingers of different age-groups to illustrate
the clinical applicability of the proposed method. This study was
performed under ethical guidelines of the institutional ethical
committee. In our study, imaging was done on the right
index DIP joint of three healthy subjects. The first and second
healthy volunteers are males of age 27 years (case 1) and
52 years (case 2), respectively, and the third healthy volunteer

Fig. 7 (a) Actual absorption coefficient map of fourth phantom and its reconstruction using (b) least
square method and (c) proposed method.

Fig. 8 (a) Actual absorption coefficient map of fifth phantom and its reconstruction using (b) least square
method and (c) proposed method.
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is female of age 29 years (case 3). None of the subjects had ever
been diagnosed with OA or experienced symptoms of OA. The
third volunteer rarely experienced morning stiffness in joints
with no OA diagnosis. The finger joint is illuminated with a
semiconductor CW laser of 680 nm (2-mW power) and the
intensity at the boundary is measured using a CCD as described
in Sec. 3. A total of seven detectors and one source are placed at
equal gaps on the boundary of the DIP joint and the whole
source detector setup is rotated by 90 deg to obtain measure-
ments for four different source locations. The absorption profiles
of the transverse section through the DIP joint of the three vol-
unteers have been reconstructed using iterative reconstruction
only and the proposed method. Figures 11(a)–11(c) illustrate
the reconstructed absorption coefficients for cases a, b, and c,
respectively, using the iterative reconstruction method. The
reconstructed absorption coefficients for cases a, b, and c
using the proposed method are portrayed in Figs. 11(d)–11
(f). It is evident from Figs. 11(d)–11(f) that all three images
exhibit similar patterns of absorption coefficients. The center
of the joint is like a void region with a low-absorption coefficient
where NIR absorption is minimal. A nearly annular region of
high absorption is surrounding the center cavity. The absorption
coefficient of this annular region increases with degradation in
the joint from normal to OA. Since the condition of the joint
degrades with age, the thickness of annular region is greater

in case 2 than that in case 1. In the case of the third volunteer,
the absorption coefficient and thickness of the annular region are
greater than that in case 1. These results are in agreement with
similar results available in the literature.26 Therefore, the absorp-
tion coefficient profile of a DIP joint has a direct impact on the
monitoring of joint condition as well as diagnosis/progression
of OA.

4.4 Performance Evaluation

To assess the performance of the proposed method, different
performance metrics have been used as described below.28

Mean square error is calculated as MSE ¼ mean

i ∈ Ω f½μtaðiÞ −
μeaðiÞ�2g where μta and μea are the target/actual and estimated/
reconstructed absorption coefficients, respectively. This can
be normalized as

nRMSE¼
 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mean

i ∈ Ω f½μtaðiÞ− μeaðiÞ�2g
r !

∕ðμmax
a − μmin

a Þ;

(5)

where μmax
a ; μmin

a are the maximum and minimum values of the
reconstructed absorption coefficient, respectively. Object

Fig. 9 (a) Actual absorption coefficient map of agarose phantom and its reconstruction using (b) least
square method and (d) least square with genetic algorithm (proposed hybrid method). (c) The initial
search space for genetic algorithm (GA) denoted by the area enclosed by white curves and (e) the
final outcome of GA for reconstructed absorption coefficients.

Fig. 10 (a) Actual absorption coefficient map of homogeneous (a) numerical and (c) agarose phantom
and reconstructed absorption coefficient of (b) numerical and (d) agarose phantom using proposed
method.
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centroid error (OCE) denotes the spatial variation of the centroid
of the reconstructed inclusion with respect to the actual inclu-
sion location. Primarily, the inclusion threshold is set as 50% of
the maximum value of the reconstructed coefficient and the
centroid is calculated as the weighted average with the recon-
structed absorption coefficients as the weights. OCE is the dif-
ference between the calculated centroid ðrest;IÞ and the actual
centroid ðrtrue;IÞ. The observed contrast can be defined as Co ¼
20 log10ðΔμ̂a;I∕Δμ̂a;BÞ where Δμ̂a;I and Δμ̂a;B are the average
relative absorption coefficients of the inclusion and background
of the same area, respectively. This is computed as a percentage
of the actual contrast value. These three measures have been
computed for the proposed method for simulation as well as
experimental data and the results are compared with the results
given in Ref. 28. All the values are tabulated in Table 1 and we
have taken the best obtained results for each algorithm. The per-
formance values for the first four methods are taken from
Ref. 28 and are based on numerical phantom. It is evident from

Table 1 that OCE has improved significantly from that of the
other methods. The value of Co is 98.4% in simulation and
90.7% in the experimental data using the proposed method.
On the other hand, the MSE is not improved from the existing
algorithm as they are nearly same values. However, the MSE is
greater for experimental data than that of the simulation. This is
due to the presence of different noise in the experimental data, as
explained earlier. The value of nRMSE is 0.494.

These values are also compared with,15 another GA based
reconstruction method. In Ref. 15, the mean OCE is within
0.6 mm for noise free data and within 3 mm for noisy data
with a signal to noise ratio of 100. In our proposed method, OCE
is within 0.22 mm in simulation (i.e., noise free) and within
1.03 mm in the experiment (may have noise). It is evident
that OCE has improved in our proposed method over that of
Ref. 15. Also, the error in the reconstructed absorption coeffi-
cient is 0.037 cm−1 (for noisy data) in Ref. 15 whereas the same
is 0.031 cm−1 for the experimental data in the present study.
These significant improvements in the reconstruction using the
proposed algorithm illustrate its potential to enhance the contrast
of the reconstructed image. The reconstruction accuracy of the
proposed algorithm is compared with that of TOAST software
as used in Ref. 29. In Ref. 29, the error in distance between two
inclusions is 0.9 mm and the same in the radii of inclusions are
in between 0.8 and 2.9 mm. The mesh of the phantom consists
of 13,174 nodes and 78,113 elements [three-dimensional (3-D)]
whereas the same for the mouse measurement is 13,452 nodes
and 80,361 elements (3-D). In the present study, the mess con-
sists of 150 nodes and 256 elements (two-dimensional). The
OCE is 0.01 to 1.03 mm in our proposed method which is com-
parable with the performance of Ref. 29. Hence, the proposed
method can be a good candidate for diagnostic imaging in clini-
cal applications.

5 Conclusions
In this study, a hybrid method using both regularized least
square and GA is proposed to improve the contrast of recon-
structed images in DOT which increases the sensitivity of the

Fig. 11 The absorption profile of transverse section of right index distal interphalangeal joint of (a) and
(d) case 1 (male, 27 years), (b) and (e) case 2 (male, 52 years) and (c) and (f) case 3 (female, 29 years).
First, the images are reconstructed using iterative reconstruction only (a)–(c) and then the proposed
hybrid method is used (d)–(f).

Table 1 Comparison of performance of the proposed method with
other existing methods.

Algorithm

Performance measures

MSE OCE (mm) Co

Algebraic reconstruction
technique28

0.001 2.5 –

Simultaneous iterative
reconstruction technique28

0.0005 1.2 –

Truncated singular value
decomposition28

0.0006 1.1 –

Truncated conjugate gradient28 0.0005 0.99 –

Proposed method Simulation 0.0009 0.01 to 0.22 98.4%

Experimental 0.0059 0.03 to 1.03 90.7%
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diagnostics imaging to a great extent. The model based iterative
reconstruction technique using least square method gives a
reconstructed image with low contrast. The GA based estima-
tion refines the reconstructed optical parameters to improve
the contrast of the reconstructed image. Different performance
measures are used to compare the proposed method with the
existing algebraic and subspace reconstruction techniques. It
is shown that using the proposed method, the OCE is signifi-
cantly reduced whereas the mean square error is almost the
same with respect to the existing methods. The OCE is 0.01
to 0.22 mm in simulation and 0.03 to 1.03 mm in the experi-
mental data. The contrast of the reconstructed image is
98.4% in simulation and 90.7% in the experimental data.
These performance metrics show the accuracy of reconstruction
of the contrast or optical parameters which are comparable with
that of pulsed DOT or frequency domain DOT facilitating func-
tional imaging using DOT. The proposed method has been vali-
dated experimentally on tissue-like phantoms. Usage of an
ordinary CCD camera, low cost CW laser, and a small number
of low cost plastic fibers as collection optics reduce the overall
cost of the instrument and make it portable. These results
reinforce its potential to be used for diagnostic DOT imaging.
An example of finger joint imaging for OA diagnosis is illus-
trated as well. Apart from diagnostic imaging, this method
can also be used for concentration measurement of a region
of interest in a turbid media.
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