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Abstract. We present unsupervised clustering methods for automatic grouping of human red blood cells (RBCs)
extracted from RBC quantitative phase images obtained by digital holographic microscopy into three RBC clus-
ters with regular shapes, including biconcave, stomatocyte, and sphero-echinocyte. We select some good fea-
tures related to the RBC profile and morphology, such as RBC average thickness, sphericity coefficient, and
mean corpuscular volume, and clustering methods, including density-based spatial clustering applications with
noise, k -medoids, and k -means, are applied to the set of morphological features. The clustering results of RBCs
using a set of three-dimensional features are compared against a set of two-dimensional features. Our exper-
imental results indicate that by utilizing the introduced set of features, two groups of biconcave RBCs and old
RBCs (suffering from the sphero-echinocyte process) can be perfectly clustered. In addition, by increasing the
number of clusters, the three RBC types can be effectively clustered in an automated unsupervised manner with
high accuracy. The performance evaluation of the clustering techniques reveals that they can assist hematol-
ogists in further diagnosis. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or
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1 Introduction
Blood cells have different functionalities in the human body and
tissue. Red blood cells (RBCs), or erythrocytes, are the most
abundant among blood cells. An erythrocyte is a discoid cell
with a thick rim and thin sunken center. The main functions
of erythrocytes are to absorb oxygen from the lungs, release
it into tissues during circulation, and transport carbon dioxide
from the tissues to the lungs. The biconcave shape of erythro-
cytes (doughnut-like) allows them to squeeze through capillaries
that are smaller than an RBC. However, different blood abnor-
malities at different stages alter the original bioconcave shape of
erythrocytes into different morphologies.1–4 During blood stor-
age in blood banks, the shape of erythrocytes changes from
biconcave to flat-disk, and then to sphero-echinocyte when
the storage time exceeds a few weeks. It has been proven
that the transfusion of damaged RBCs can cause severe prob-
lems to body tissue and, in some cases, may lead to death.5–9

A typical human erythrocyte RBC has a diameter of ∼6.4 to
7.76 μm10 and thickness of 2 to 3 μm at its thickest point.11 The
surface area of adult mature RBCs is 140 μm2. Under some cir-
cumstances, a mature RBC undergoes deformation into different
shapes, such as echinocytes, stomatocytes, spherocytes, ellipto-
cytes, acanthocytes, burr cells, and schizocytes among others.12

There are cases in which different types of RBCs may exhibit
similar characteristics, such as mean corpuscular volume
(MCV), with tiny differences in surface area and, in some

cases, constant surface area and similar shapes, which make
them difficult to distinguish easily. Therefore, RBC clustering
suffers from common characteristics among different kinds of
RBCs. Thus, different RBCs may sometimes be categorized in
the same group and result in a significant misclassification. In
a conventional RBC investigation, a hematologist manually
counts and classifies the cells with assistance from a microscope;
this is a procedure that is tiresome, time-consuming, and suscep-
tible to error. More specifically, the accuracy of the counting and
diagnosis is affected by subjective circumstances, such as expe-
rience and fatigue, due to human exhaustion.13–16 Many efforts
have been made in RBC studies to detect abnormalities in sam-
ples before transfusion to the patient to prevent future disorders
caused by the malfunction of RBCs.17–19

According to the above discussion, we believe the utilization
of clustering techniques can provide us with reasonable results.
Therefore, because of the irregularly shaped groups of RBC
types distributed in feature space, the density-based clustering
method can be effective in this case and for overlapped RBC
data. Fuzzy clustering methods are efficient unsupervised meth-
ods that can be applied in this field for regularly shaped data
points.20,21

The idea of data clustering is based on the concept that the
human brain processes information as patterns rather than
numerical entities. Clustering is a process that groups data
observations that are similar to each other, whereas data obser-
vations of different clusters are not similar. In supervised clas-
sification methods, the data need to be labeled before applying
the classification method. As RBC data from the initial phase
image are unlabeled, the unsupervised method needs to be
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used to label and cluster them automatically. In the unsupervised
method, the goal is to intrinsically group unlabeled data without
predefined data groups.20–23

In conventional two-dimensional (2-D) microscopic imaging
techniques, it is difficult to detect the three-dimensional (3-D)
shape of erythrocytes; thus, the overall performance is not
acceptable. However, digital holographic microscopy (DHM)
is capable of imaging semitransparent or transparent biological
cells and provides quantitative detailed information about the
cell structure and its contents at a single-RBC level. In addition,
it is a noninvasive and label-free method. Therefore, samples
can remain untouched for further investigations. The quantita-
tive phase image (QPI) obtained by DHM enables us to measure
the 3-D properties of RBCs, which include the volume, surface
area, projected surface area (PSA), and dry mass of the biologi-
cal cell.10,11,24,25

In this study, we apply several clustering methods to cluster
the different shapes of RBCs. Several RBC samples with three
major morphologies, biconcave, stomatocyte, and sphero-echi-
nocyte, are visualized by the DHM technique and are combined
together. RBCs are obtained from the reconstructed phase image
from the DHM technique using the watershed segmentation
algorithm.24,25 After feature extraction, similar to our previous
work,11 we select some good features that can efficiently dis-
criminate between the RBC types and evaluate the clustering
power of the selected features against 2-D features only. To
decrease the dimensions of the features dataset, principal com-
ponent analysis (PCA) is applied to the extracted features, and
only three PCAs are retained. Our experimental results reveal
that three PCAs can represent 90% of the entire variance.
This can help us reduce the problem, enhance the clustering
speed, and make the solution more efficient. In addition, the
PCA technique is useful for visualizing better the 2-D and 3-D
space. Eventually, several clustering methods, including den-
sity-based spatial clustering applications with noise (DBSCAN),
k-medoids, and k-means clustering are applied to the dimension-
reduced 2-D and 3-D features, and the clustering performance is
evaluated against the 2-D features. Our experimental results

show that the combination (2-D and 3-D) of features can obtain
high-accuracy clustering results against 2-D features in the auto-
mated clustering of RBCs with regular shapes.

The rest of this paper is organized as follows. Section 2 is
dedicated to explaining the schematic of the off-axis DHM
and RBC preparation process. The image segmentation tech-
nique used in this experiment for extracting RBC samples
from QPIs is briefly discussed in Sec. 3. The feature extraction
process in this experiment is described in Sec. 4. DBSCAN is
discussed in detail in Sec. 5. The k-medoids and k-means clus-
tering methods are discussed in depth in Secs. 6 and 7, respec-
tively. The experimental results and discussion on the accuracy
ratio of the combination of features against the 2-D features are
explained in Sec. 8. Finally, we evaluate clustering results using
silhouette index (SI) in Sec. 9. We conclude the paper in Sec. 10.

2 Off-Axis Digital Holographic Microscopy
and Red Blood Cell Preparation

2.1 Off-Axis Digital Holographic Microscopy

The off-axis DHM system uses a laser diode source of wave-
length λ ¼ 682 nm. The laser beam is divided into two
waves, the object wave and reference wave. The object wave
passes through the RBC sample and gets diffracted and magni-
fied by a microscope objective (magnification: 40× and numeri-
cal aperture: 0.75); then, it interferes with the reference wave in
the off-axis geometry. The interference pattern between the
object and reference waves is recorded via a charge-coupled
device. The QPI of the RBCs is reconstructed from the recorded
interference pattern using a specific numerical algorithm.26 A
schematic of the off-axis DHM system is shown in Fig. 1.

2.2 Red Blood Cell Preparation

RBC samples were collected from laboratory personnel of the
Laboratoire Suisse d’Analyse du Dopage, Centre Hospitalier
Universitaire Vaudois, and for further investigations on the
RBC deformation during storage, they were stored at 4°C for

Fig. 1 Schematic representation of an off-axis DHM setup.
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a period of time. The total amount of RBCs in the 100 to 150 μl
of mainly stomatocytes and discocytes was contained in a high-
efficiency particulate air (HEPA) buffer at 0.2% hematocrit,
whereas for the echinocyte morphology, the hematocrit concen-
tration was almost 0.15%. To prepare the erythrocytes to be
mounted on the DHM stage, they were diluted; 4 μl of sus-
pended erythrocytes were diluted to 150 μl of the HEPA buffer
and then carried to the experiment room where the erythrocytes
were covered by two cover slides divided by a 1.2-mm-thick
splitter. To conduct the RBC experiments, the temperature of
the experiment room was 22°C. Before placing the erythrocytes
on the DHM stage, the cells were maintained at a temperature of
37°C for 30 min.

3 Quantitative Phase Image Segmentation
of Red Blood Cells

Once we obtain an RBC QPI by the off-axis DHM system,
several image-processing algorithms are applied to extract the
RBCs from the reconstructed RBC QPI. The first step is to detect
the correct RBC samples from the others to be extracted. Next, we
remove the noise and background from the RBC QPI by applying
the marker-controlled watershed segmentation algorithm to
obtain segmented RBC images.24,25 Each RBC sample is detected
and extracted for analysis, and more than 14 different character-
istics of every RBC sample are automatically measured.11 We
further explain the features we used in this paper.

Figure 2 shows the segmentation results for the automatic
extraction of RBC samples from the RBC QPI obtained by
the DHM system. As we mentioned, the samples we used in
this study were extracted from the three main morphologies.

The first sample contains the normal RBCs with a biconcave
morphology [Fig. 3(a)]. The second sample contains RBCs
that are suffering from the sphero-echinocyte process (other
morphologies, such as biconcave, can also be found). They
were stored for 57 days and then imaged by DHM. The last sam-
ple contains cells that are mostly of the stomatocyte morphol-
ogy. In total, 275 single RBCs were extracted for the feature
extraction section.

4 Feature Extraction and Selection
In this experiment, we extract over 14 2-D and 3-D features
related to the RBC profile. We select the best combination of
2-D and 3-D features that can efficiently distinguish between
different RBC types and another six 2-D features to compare
the clustering method performance.11 The first selected 3-D fea-
ture to be used in this experiment is the average cell thickness
(ACT), which can be calculated by the following equation:

EQ-TARGET;temp:intralink-;e001;326;564ACT ¼
P

k
i¼1

P
l
j¼1 hði; jÞ

k × l
; (1)

where hði; jÞ is the thickness at the ði; jÞ’th pixel. For each
pixel of ði; jÞ in the QPI, hði; jÞ is calculated by the following
equation:

EQ-TARGET;temp:intralink-;e002;326;487hði; jÞ ¼ φði; jÞ × λ

2πðnrbc − nmÞ
; (2)

where φði; jÞ is the phase value in radians and the refractive
index of RBCs, nrbc, is calculated with dual-wavelength

Fig. 2 Segmentation step: (a) original QPI obtained by off-axis DHM, (b) corresponding segmented RBC
image using the marker-controlled watershed algorithm, and (c) binary-segmented RBC image (white bar
indicates 10 μm).

Fig. 3 (a) Biconcave sample, (b) RBCs suffering from sphero-echinocytes, and (c) stomatocyte sample.
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DHM. The refraction index of the HEPAmedium, nm, is 1.3334,
and k and l are the width and length of the RBC image, respec-
tively. The PSA is another feature used in this experiment. The
PSA can be calculated from the following equation:

EQ-TARGET;temp:intralink-;e003;63;708PSA ¼ N × p2; (3)

where N is the number of pixels of the projected cell and p is the
size (p ¼ 0.159 μm, here) of each pixel in the image. The vol-
ume, or MCV, of the RBC can be calculated by the following
equation:

EQ-TARGET;temp:intralink-;e004;63;635MCV ¼ p2
Xk
i¼1

Xl

j¼1

hði; jÞ: (4)

The fourth feature is the sphericity coefficient, which can be
obtained using the following equation:

EQ-TARGET;temp:intralink-;e005;63;565SP ¼ dc
dr

; (5)

where dc and dr are the thickness values in the center and ring of
the RBC, respectively. The last feature is the perimeter of the

projected RBC profile on the X − Y plane. The RBC perimeter
is the length of the RBC boundary.13 The descriptions of the five
selected features and their 2-D and 3-D types are summarized in
Table 1.

In our experiment, we evaluated the clustering power of the
2-D features against the best 2-D and 3-D features. We believe
that to obtain the best clustering results, we must select the
major 2-D and 3-D features. The selected 2-D RBC features
and their descriptions are listed in Table 2.

5 Density-Based Spatial Clustering
Applications with Noise

DBSCAN is a clustering method proposed by Ester et al. in
1996, which can identify clusters in large spatial data using
the density of data elements. If we consider a point of data
as some point distributed in space, the method groups the
data points that are in close proximity to each other.27 For a
set of samples distributed in feature space to be clustered,
DBSCAN has two main parameters, MinPts (number of p
points) and ε, where p is the number of data points and ε (epsi-
lon) is the maximum radius of neighboring p points. It is a non-
parametric approach and considers one point as a core point if at
least a minimum number of p points is within a distance ε of the
core point neighborhood. In every step, the core point is
changed, and the number of points reachable from the core
point with the distance ε is checked again; the core point is
changed until all reachable points are met, and the unreachable
points are marked as noise points.28

Figure 4 shows a schematic representation of the density-
based clustering method. The red points are considered as
noise points. This implies that the noise data points are far
from the other data points. In the DBSCAN clustering method,
we need not define the number of clusters, such as in the tradi-
tional method. When a cluster is surrounded by another cluster,
DBSCAN can cluster the inner and outer clusters effectively.
DBSCAN selects two values as input parameters, which can
effectively be adjusted according to the density of data points.
This parameter can be set by an expert and also be based on data
observations.28

6 k -Medoids Clustering Method
The k-medoids clustering method is a combination of two main
algorithms of k-means and medoid shift. Both k-medoids and
k-means group similar data and separate them from the other
clusters.29 The k-means clustering method is based on the min-
imization of the total square error, whereas k-medoids attempts
to minimize the sum of differences between different samples in
the same cluster with the medoid point, which is the center point

Table 1 Descriptions and feature type divisions of selected 2-D and
3-D features (best selected feature set).

Segmented single RBC sample

Feature Description
Feature
type

ACT Thickness of ði ; jÞ pixel for every
phase value

3-D

PSA Number of pixels within single
RBC × one pixel area

2-D

Sphericity
coefficient

Center part phase value/maximum
phase value

3-D

Perimeter Length of boundary part of cell 2-D

MCV Mean corpuscular volume 3-D

Table 2 Description and feature type divisions of selected 2-D RBC
features.

Segmented single RBC sample

Feature Description

PSA Number of pixels within single
RBC × one pixel area

Elongation (Ei) Direction of chain code in cell membrane

Perimeter (Pr) Length of RBC cell boundary

Circularity (Ci) Pr2 ∕PSA

PSA/perimeter PSA/Pr

Radius (R) Estimation of radius of circle with
the area of R ¼ ffiffiffiffiffiffiffiffiffiffi

PSA
p

∕π

Noise

Epsilon

Fig. 4 Schematic representation of density-based clustering method.
Epsilon and noise points are marked.
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of every cluster. k-medoids considers one data point as the
center of a cluster. It is more powerful than the k-means algo-
rithm because it is not sensitive to outliers. k-means is easily
influenced by high-value data points in the dataset because it
considers the mean of all data points, whereas k-medoids con-
siders centered data points, which are more reliable.30 When we
have an infinite dataset, the k-medoids clustering method con-
siders a data point that exhibits a minimum average dissimilarity
to all the other data points. The steps of the k-medoids clustering
algorithm are as follows:

1. choose a random k-point among all data points as the
medoid point,

2. assign each n data point to the medoid point that is the
close distance to medoid point,

3. for all medoid and data points, compute the cost to
swap a medoid point between data points and select
a medoid point that has the lowest cost, and

4. repeat steps 2 and 3 until all medoid points are fixed.

The cost function is as follows:

EQ-TARGET;temp:intralink-;e006;63;505costðX;CÞ ¼
Xd
i¼1

jXi − Cij; (6)

where Xi is the data point, Ci is the center point, which is known
as the medoid point, and d is the dimension of the data point.

7 k -Means Clustering Method
The k-means clustering method is a popular method for cluster-
ing data observations into k clusters by assigning data observa-
tions to each cluster with close distance to the mean value of all
similar observations in the same cluster. This process causes the
data space to be partitioned according to the mean value of sim-
ilar data observations.31 If we consider data observations asD ¼
fX1; X2; : : : :; Xng and the number of different clusters as k, the
k-means algorithm attempts to find a k centroid point
C ¼ fC1; : : : ::; Cng to minimize the distance between the
data and centroid point.32 The main idea of k-means clustering
is to find the best centroid point for each cluster based on the

mean value of all data observations in that cluster. During sev-
eral iterations, k-means attempts to find the best centroid point
for each cluster with the closest distance to all observations of k
clusters by updating the centroid point. In every iteration, the
centroid point will be changed until there are no new points
to change. The steps to find the best centroid point in the
k-means clustering method are as follows:

1. assign k point to the data space that is going to be
clustered,

2. assign each data point of the cluster to the closest cent-
roid point,

3. after assigning all data points to their corresponding
centroid points, update the k centroid point, and

4. repeat steps 2 and 3 until there are no points left.

The summation of distances can be calculated by the squared
Euclidean distance error function using the following equa-
tion:33

EQ-TARGET;temp:intralink-;e007;326;528dðQ;PÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

ðQi − PiÞ2
s

; (7)

where Pi and Qi are the two data points of which their Euclidean
distances are going to be calculated.

8 Experimental Results and Discussion
After feature extraction, since our analysis is in 2-D and 3-D
feature space, we applied PCA to reduce the data dimension
into 2-D and 3-D feature space and to find a more meaningful
basis or coordination of our data instead of original features.
Whereas DBSCAN measures the distance of each data sample
with neighboring samples using circle radius,28 we used two
PCA to be applied to DBSCAN method but for other method,
we used three PCA since we analyze results in 3-D feature space
as shown in Figs 5 and 10. Figure 5(a) presents the data distri-
bution of the best features according to the first and second PCs.
We believe that by varying the number of clusters, we should
expect to observe similar morphologies categorized in the
same cluster. We evaluated two and three clusters in this

Fig. 5 Original data distribution based on the first and second principal components (PCA1 and PCA2) of
RBC types of the (a) best features and (b) 2-D features.
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study. By utilizing the SI (in k-means clustering), the internal
evaluation revealed that increasing the number of clusters
decreases the accuracy of the clustering technique (data not
shown). Another reason for choosing two and three clusters
is that the samples are extracted from three different morphol-
ogies. Figure 5(b) shows the original data distribution based on
six 2-D features.

8.1 Density-Based Spatial Clustering Applications
with Noise Clustering Results

As we mentioned before, the density-based clustering approach
clusters data based on the density of data observations.
Therefore, this method is not based on the shape of data obser-
vations, and the number of clusters in a dataset is not predefined.

Because of the density of RBC samples distributed in feature
space, as shown in Fig. 5, we first applied the DBSCAN clus-
tering algorithm and repeated the clustering experiment while
varying the MinPts and epsilon parameters to find the most effi-
cient clustering result. The MinPts parameter denotes the mini-
mum number of data points that can be covered by the radius of
a circle, which is known as the epsilon value. Concerning the
selection of DBSCAN parameters, there is no special role for
MinPts and epsilon parameters. They depend on density and dis-
tance of data points around the core point. A low MinPts causes
more clusters to build from noise and generates more outliers,
and for the epsilon parameter, it is normally considered a num-
ber between zero and one on the dataset. Hence, both parameters
should not be too small or too large.

DBSCAN considers samples that are far from the other sam-
ples as noise or unknown data. This implies that these samples
are considered different from the known samples. Therefore, we
changed the values of MinPts and epsilon to obtain the best
value for these parameters and obtain the best clustering result.
In the case of clustering RBCs using DBSCAN based on the
2-D features, according to the data distribution presented in
Fig. 5(b), there is no border between different regions of differ-
ent RBC samples in feature space; therefore, DBSCAN cannot
cluster the data points with no border between different regions
and considers all data points as one cluster (data not shown).
Thus, this proves that the 2-D features are not suitable enough
to be clustered by the DBSCAN clustering method. However,
for the combination of 2-D and 3-D features, the DBSCAN clus-
tering method can attain a 100% clustering accuracy (see
Table 3). The accuracy of the clustering technique can be
obtained by comparing an expert’s visual examination (manual
clustering) with the automated clustering technique.

Figure 6 shows the graphical representations of the
DBSCAN clustering results for a MinPts value of 4 and epsilon
values of 0.6 and 0.8. The DBSCAN clustering performance
results for MinPts values of 5, 6, and 7, and epsilon values
of 0.6 and 0.8 are also graphically represented in Figs. 7–9,
respectively. It is noted that the DBSCAN algorithm that is
based on the density of RBC samples in feature space clusters
two main RBC types of biconcave and stomatocyte in the same
cluster because of their similarities and distinguishes them from
the sphero-echinocyte RBC type. In some cases, by changing
the epsilon and MinPts value, some of RBCs are considered

Table 3 Clustering performance evaluation results of density-based
clustering method using different values for MinPts and epsilon.

Epsilon MinPts
Max

iteration
Number
of noise

Clustering
accuracy
ratio (%)

0.8 4 4 0 100

0.7 4 3 1 99.6

0.6 4 2 9 96.7

0.8 5 4 3 98.9

0.7 5 3 4 98.5

0.6 5 3 9 96.7

0.8 6 3 3 98.9

0.7 6 3 6 97.8

0.6 6 3 10 96.3

0.8 7 4 3 98.9

0.7 7 3 6 97.8

0.6 7 4 10 96.3

Fig. 6 Density-based clustering results using MinPts of 4 and epsilon of (a) 0.6 and (b) 0.8.
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unknown and marked as noise. It is evident from Fig. 6(b) that
we attained a 100% clustering result for the two clusters using a
MinPts of 4 and radius of 0.8 and all data points are affected by
the radius and MinPts parameters. For the three clusters,

according to the density of data points distributed in feature
space, the data points of biconcave and sphero-echinocytes
are placed in very close proximity to each other. Different
radii affect both types and will accordingly be clustered as

Fig. 7 Density-based clustering results using MinPts of 5 and epsilon of (a) 0.6 and (b) 0.8.

(a) (b)

Fig. 8 Density-based clustering results using MinPts of 6 and epsilon of (a) 0.6 and (b) 0.8.

(a) (b)

Fig. 9 Density-based clustering results using MinPts of 7 and epsilon of (a) 0.6 and (b) 0.8.
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one cluster. Therefore, we applied the DBSCAN algorithm to
cluster RBCs into two clusters.

Different evaluations of the density-based clustering method
for different values of epsilon and MinPts, including max iter-
ation, clustering accuracy, and misclassification ratio to cluster
all data points in the region of epsilon (radius), as well as num-
ber of points far from the other data, which are considered as
noise points, are presented in Table 3.

8.2 k-Medoids Clustering Results

In this experiment, we applied the k-medoids clustering method.
We plotted the original RBC data distribution using three PCAs
to analyze the clustering performance in 3-D-space based on the
best 2-D and 3-D features (see Fig. 10).

We applied k-medoids on the 3-D data points based on the
three PCAs to cluster RBC data into two and three clusters. For
the two clusters, it is observed that the RBC data have been clus-
tered effectively and with high accuracy. As shown in Fig. 11,
the k-medoids clustering method found the best central data
point in which it can perfectly represent all data points in a

specific cluster and marked it as medoid point. The data
point that has close distance to the medoid point is allocated
to that specific cluster. Because of the similarity between the
two main types of biconcave and stomatocyte morphologies,
their central point, or so-called medoid point, considers them
to be one cluster. Figure 11(a) demonstrates that the sphero-
echinocyte RBC samples, which are represented as cluster 1,
are fully separated from the biconcave and stomatocyte mor-
phologies using the best 2-D- and 3-D-selected features.
Figure 11(b) shows a graphical representation of the k-medoid
clustering method using the 2-D features to cluster RBC sam-
ples into two clusters. The clustering accuracy for both the best
features and 2-D features is presented in Table 4.

Similarly, we also applied the k-medoids clustering method
to cluster RBC data into three clusters according to the three
main RBC types. A graphical representation of the k-medoids
clustering method on the best features and 2-D features is shown
in Fig. 12. The medoid points are circled and indicate the center
data point for each cluster (see Fig. 12). The experimental results
demonstrate that the three main types of RBC samples can effec-
tively be clustered with a high accuracy using the best features.

(a) (b)

Fig. 10 Original data distribution in 3-D data space based on the three PCAs using (a) best selected
feature set and (b) 2-D features.

(a) (b)

Fig. 11 k -medoids clustering results of clustering RBC samples into two clusters using (a) best selected
feature set and (b) 2-D features.
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The clustering accuracy of the k-medoids clustering method on
2-D features is presented in Table 4.

According to Table 4, the clustering accuracy of the best
selected features is much higher than using only the 2-D
features. This fact proves that 2-D features cannot suitably
discriminate between the different RBC types. As shown in
Table 4, since two RBC types of biconcave and stomatocyte
have some similarities in shape and features, when we
increase the number of clusters, some samples are misclassi-
fied and cause a decrease in the clustering accuracy for three
clusters.

8.3 k-Means Clustering Results

In the first experiment, the k-means clustering method is utilized
by defining two numbers of clusters for the RBC data.
Figure 13(a) shows the k-means clustering results for clustering

Table 4 k -medoids clustering results for two and three clusters on
three main types of RBC samples using the best selected features
and 2-D features (275 total samples).

Clustering method

Number
of

clusters

Total
misclassified
samples

Clustering
accuracy
rate (%)

k -medoids clustering
results using 2-D features

2 25 90.9

3 43 84.3

k -medoids clustering
results using best
selected features

2 4 98.5

3 14 94.9

f f

(a) (b)

Fig. 12 k -medoids clustering results and medoid points for clustering RBC samples into three clusters
using (a) best selected feature set and (b) 2-D features.

(a) (b)

Fig. 13 k -means clustering results on RBC samples for two clusters. Different clusters are represented
in different colors using (a) best selected feature set and (b) 2-D features.
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RBC types using the best features for the two clusters. As we
expected, the clustering results demonstrate that k-means clus-
ters two RBC types of biconcave and stomatocyte into one clus-
ter because of their similarities and separates them from the
sphero-echinocyte RBC type. Figure 13(b) shows a graphical

representation of the k-means clustering method on 2-D features
of the RBC data. The accuracy ratio of both methods is pre-
sented in Table 5.

Similarly, we also apply the k-means clustering method to
the RBC data to cluster data points into three clusters using
the best features and 2-D features. Figure 14 indicates that
by using the best-selected features, all RBC types of biconcave,
discocyte, and stomatocyte can be clustered to a great extent.
The clustering accuracy of the 2-D features is significantly
lower than that of the best features (see Table 5).

As the k-means clustering method uses the mean of all data
points in the same cluster as the centroid point, the experimental
results indicate that the k-means method clusters data with a
high accuracy level up to 98% for two clusters and 95% for
three clusters using the best features. This fact reveals that
3-D features can significantly influence the mean value of data
points in the same cluster.

The results obtained by different clustering methods reveal
that clustering techniques can be very efficient and accurate
if we can choose a good feature set. Specifically, in RBC clus-
tering, the combination of 2-D and 3-D features can signifi-
cantly increase the accuracy of the clustering results.

Table 5 k -means clustering results on three main types of RBC sam-
ples for two and three clusters using the best selected features and 2-
D features (275 total samples).

Clustering method

Number
of

clusters

Total
misclassified
samples

Clustering
accuracy
rate (%)

k -means clustering
results using 2-D
features

2 37 86.5

3 52 81.0

k -means clustering
results using best
selected features

2 3 98.9

3 13 95.2

(a) (b)

Fig. 14 k -means clustering results on three main RBC samples for three clusters using (a) best selected
feature set and (b) 2-D features.

(a) (b)

Fig. 15 SI for (a) two clusters and (b) three clusters.
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9 Internal Evaluation of Clustering
Techniques

In another experiment with internal evaluation of the clustering
technique, k-means (almost similar results are obtained for the
other clustering techniques) is performed by measuring the SI.
SI varies between −1 and þ1, and high SI indicates that the
input sample is well-matched to its own cluster and poorly
matched to neighboring clusters. If most points have a high sil-
houette value, the plot shows an assessment of how close each
sample in one cluster is to samples in the neighboring clusters
and using this way, we can measure parameters, such as number
of clusters visually.

Silhouette coefficients near þ1 mean that the samples are
well distinguished from neighboring clusters. Samples that
are very close to the neighboring clusters will get zero value,
and negative values indicate samples are clustered to the
wrong cluster. According to Figs. 15(a) and 15(b), we can
see that most of the silhouette values are close to þ1. There
are a few values below zero that are not well matched to the
corresponding cluster.

10 Conclusions
The quality and functionality of RBCs play major roles in the
human health system. Storing blood for long periods can dam-
age the functionality and quality of RBCs. In this study, we
applied several unsupervised clustering methods, including
DBSCAN clustering, k-medoids, and k-means clustering, for
clustering three RBC types of biconcave, stomatocyte, and
sphero-echinocyte into two and three clusters. The RBC sam-
ples that were visualized by the DHM technique were extracted
from the blood sample. DHM provides QPIs of the 3-D profile
of RBCs with nanometer accuracy. More than 14 2-D and 3-D
features were extracted from every RBC sample. We selected a
combinational set of 2-D and 3-D features that can suitably dis-
criminate between the three regular RBC types. The combina-
tional features include the ACT, PSA, sphericity coefficient,
perimeter, and MCV. The clustering power of the combinational
set of 2-D and 3-D features was compared against a set of six 2-
D features, and the clustering results were evaluated for every
clustering method. The experimental results and performance of
clustering methods indicate that the combinational feature set
can yield better RBC clustering. In addition, using the combina-
tional features, we were able to cluster biconcave, stomatocyte,
and sphero-echinocyte morphologies to a great extent, which are
paramount for RBC abnormality analyses and shape-related
diseases.
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