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Abstract

Significance: Spatial frequency domain imaging (SFDI) is an imaging modality that projects
spatially modulated light patterns to determine optical property maps for absorption and reduced
scattering of biological tissue via a pixel-by-pixel data acquisition and analysis procedure.
Compressive sensing (CS) is a signal processing methodology which aims to reproduce the
original signal with a reduced number of measurements, addressing the pixel-wise nature of
SFDI. These methodologies have been combined for complex heterogenous data in both the
image detection and data analysis stage in a compressive sensing SFDI (cs-SFDI) approach,
showing reduction in both the data acquisition and overall computational time.

Aim: Application of CS in SFDI data acquisition and image reconstruction significantly
improves data collection and image recovery time without loss of quantitative accuracy.

Approach: cs-SFDI has been applied to an increased heterogenic sample from the AppSFDI
data set (back of the hand), highlighting the increased number of CS measurements required as
compared to simple phantoms to accurately obtain optical property maps. A novel application of
CS to the parameter recovery stage of image analysis has also been developed and validated.

Results: Dimensionality reduction has been demonstrated using the increased heterogenic
sample at both the acquisition and analysis stages. A data reduction of 30% for the cs-SFDI
and up to 80% for the parameter recover was achieved as compared to traditional SFDI, while
maintaining an error of <10% for the recovered optical property maps.

Conclusion: The application of data reduction through CS demonstrates additional capabilities
for multi- and hyperspectral SFDI, providing advanced optical and physiological property maps.
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1 Introduction

Spatial frequency domain imaging (SFDI) is a form of diffuse optical imaging, traditionally
performed within the visible/near-infrared (VIS/NIR) range.1 This method projects spatially
modulated light in the form of sinusoidal patterns onto optical phantoms or biological tissue
of interest to produce optical property maps of absorption, μa, and reduced scattering, μ 0

s, via
images collected from two different spatial frequencies and three phases. If collected at more
than one wavelength, tissue constituent maps can be derived for properties including oxy- and
deoxy-hemoglobin, oxygen saturation, lipid content, and water.2
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Advances to SFDI have focused mainly upon the instrumentation and data acquisition. The
wavelengths used by the system can be optimized for the samples of interest, and have been
extended beyond the VIS/NIR range.3,4 Multiple wavelengths can be imaged simultaneously
using more than one monochrome camera or with temporally modulated illumination, both
reducing the imaging time required.2,5 While these methods still use the two spatial frequencies
and three phases, the single snapshot of optical property (SSOP) method requires only one illu-
mination image at a non-zero spatial frequency, by performing the initial image analysis directly
in the frequency domain, increasing the acquisition rate by six-fold as a form of data acquisition
improvement.6

Both instrumentation and data acquisition improvements have been demonstrated previously
with the application of compressive sensing (CS),7 where the detection optics are changed to
a single-pixel detector and digitial micromirror device (DMD) to display the random pattern for
each measurement, along with multiple LED illumination, to determine the tissue optical proper-
ties. This application to SFDI, named cs-SFDI, was used to measure the optical properties of
a simple tissue-mimicking phantom with a cylindrical anomaly and compared to those obtained
from a traditional SFDI measurement. The aim of this study was to reduce the number of
measurements required to obtain the raw SFDI images, while also collecting three different illu-
mination wavelengths simultaneously, working toward multi- and hyperspectral SFDI,
without the use of expensive hyperspectral cameras.8 The raw images for each wavelength
were reconstructed using the denoising-based approximate message passing CS algorithm and
analyzed using the traditional pixel-by-pixel SFDI procedure to obtain optical property maps for
both μa, and μ 0

s. These maps were compared to those collected using a conventional camera-
based SFDI method for two regions of interest, corresponding to the central anomaly and
background of the tissue-mimicking phantom. The percentage difference between the optical
properties for these two SFDI methods was <10% for an ∼90% reduction in measurements,
with only 400 measurements required compared to the full 4096 pixels for the camera-based
SFDI. This lower measurement number is a form of data reduction, reducing the data size
required to collect multiple wavelength measurements and the full image field of view.

While this highlights a novel image acquisition process for SFDI, the study is limited by the
low heterogeneity of the tissue-mimicking phantom. This increases the sparsity of the data set
and hence reduces the number of patterns required to reconstruct an accurate image. The next
step for the cs-SFDI method is to consider an increased heterogenic sample. The heterogeneity in
this work is defined as the increased variation of the spatial distribution and the corresponding
contrast of the optical properties for both the absorption and reduced scattering. This is per-
formed using biological samples imaged with clinical SFDI measurements, to determine any
possible data reduction and reduced measurements for the pixel-by-pixel detection for a reduced
sparse sample. The parameter recovery algorithm is also performed in a pixel-wise manner;
therefore, CS applications may also be tested here.

CS has also been used for further biomedical imaging modalities, including diffuse optical
tomography (DOT) and bioluminescent imaging through the use of single-pixel detectors to
reduce the number of measurements.9,10 A multiple view DOT/fluorescence molecular tomog-
raphy system, which has two DMDs for illumination and acquisition, uses structured illumi-
nation and compressive detection to collect data that has good agreement with the traditional
CCD method.11 Within the field of compressive fluorescence lifetime imaging, different com-
pressive basis patterns have been assessed, including Fourier and Hadamard, and CS has been
used for time-resolved hyperspectral imaging.12,13

The aim of this study is to apply and test CS methods to both the SFDI image acquisition and
analysis stage for the purposes of data reduction, improved computation time while maintaining
accuracy on a realistic dataset. The cs-SFDI methodology has been simulated using the
AppSFDI data set,14 consisting of an increased heterogenic sample to validate this method, with
the results showing an increased number of measurements are required to accurately obtain
optical property maps, although a reduction in data is still possible. Additionally, the parameter
recovery algorithm has also been performed within the compressed state, and optical property
maps were obtained for the App SFDI data set with an error of <10% for a data reduction of up to
80%. Overall, these methods show that the use of CS within multi stages of the SFDI imaging
modality can greatly reduce the data required to accurately obtain optical property maps.
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2 Theory and Methods

2.1 Spatial Frequency Domain Imaging

SFDI has been used for both research and clinical imaging for over 10 years.15 The theoretical
background, instrumentation, data acquisition methods, and processing steps have been thor-
oughly described previously.1 In SFDI, spatially modulated light patterns are projected onto
a region of interest in the VIS/NIR range. The illumination consists of sinusoidal incoherent
monochromatic light patterns at specific frequencies and three different phases. The diffused
backscattered light is collected and processed to determine the reflectance at each specific wave-
length and spatial frequency. This is then further separated into absorption, μa, and reduced
scattering, μ 0

s, using a light propagation model, including Monte Carlo simulations or analytical
solutions. A breakdown of the three key steps is shown within Fig. 1(a). To obtain the optical
property maps of both μa and μ 0

s, data from at least two different spatial frequencies are required.
It has been shown that low frequencies are sensitive to changes in μa while higher frequencies are
sensitive to μ 0

s. Therefore, it is common for SFDI measurements to be taken at 0 and 0.2 mm−1,
as optimized in a previous study.1 These two frequencies allow for the DC and AC demodulated
images to be collected from the three different phase measurements, using Eqs. (1) and (2),
respectively

EQ-TARGET;temp:intralink-;e001;116;512DCðx; yÞ ¼ 1

3
· fIðx; y;ϕ1Þ þ Iðx; y;ϕ2Þ þ Iðx; y;ϕ3Þg; (1)

EQ-TARGET;temp:intralink-;e002;116;458ACðx; yÞ ¼
ffiffiffi
2

p

3
·

� ½Iðx; y;ϕ1Þ − Iðx; y;ϕ2Þ�2 þ ½Iðx; y;ϕ2Þ − Iðx; y;ϕ3Þ�2
þ½Iðx; y;ϕ3Þ − Iðx; y;ϕ1Þ�2

�
1∕2

; (2)

where the three phases values, ϕ, are 0, 2∕3π, and 4∕3π. These demodulated images then
undergo a calibration against phantom images. These phantom images, of a set of known optical
properties, are used alongside a forward model to correct for any instrument response using
Eq. (3):

Fig. 1 SFDI analysis workflows. (a) Traditional three-stage workflow. (b) cs-SFDI based workflow,
here, raw images are compressed and reconstructed to simulate single-pixel detection, before
following the traditional workflow. (c) CS-based parameter recovery algorithm, here, the demodu-
lated images are compressed before both calibration and optical fitting are performed in the
compressed space, before image reconstruction to generate the optical property maps.
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EQ-TARGET;temp:intralink-;e003;116;735ICALIBðx; y; fxÞ ¼ PredðfxÞ
SampDEMODðx; y; fxÞ
PhanDEMODðx; y; fxÞ

; (3)

where PredðfxÞ is the model reflectance from the photon propagation model, resulting in the pair
of calibrated images from the two different spatial frequencies. With a set of calibrated images, a
variety of methods can be used to determine the samples optical properties using the inverse
model, including least-square methods and look-up tables, calculated from Monte Carlo
simulations.

2.2 Compressive Sensing

Consider a 2D image of N pixels, which can be represented as a N × 1 vector, x. This vector can
be represented as a combination of its orthonormal basis,

EQ-TARGET;temp:intralink-;e004;116;579x ¼
XN
i¼1

Ψisi ¼ Ψs; (4)

where Ψ is the transform operator and s an N × 1 vector of weight coefficients.
CS theory states that the signal, x, can be reconstructed using M ≪ N patterns, with the

sensing matrix ΦM×N via the measurement vector,

EQ-TARGET;temp:intralink-;e005;116;496y ¼ Φx ¼ ΦΨs: (5)

This sensing matrix is composed of 1’s and 0’s (Fig. 2), in the form of a Bernoulli distribution
to generate random patterns of N pixels per pattern, although other patterns such as Hadamard,
wavelet, and speckle patterns can be used, and the data are then represented in the basis where
the signal is most sparse.9

Within this sparse space, the image vector x is represented as a linear combination of K basis
vectors, where K ≪ N. These bases included discrete Fourier transform, wavelet, and discrete
cosine transform, which are used in common image compression applications such as JPEG-
2000, with the discrete cosine transform used for this study.

With the measurement vector and basis for representation defined, the final step is the recon-
struction to recover the image x. Several different minimization methods can be used including
l2-norm, l0-norm, and l1-norm reconstruction algorithms. l2-norm is not suitable in seeking
K-sparse solutions, instead almost always finding a nonsparse ŝ solution, while the l0-norm is
both numerically unstable and nondeterministic polynomial time complete, hence difficult
to minimize.16 Therefore, to then reconstruct the original signal x, a solution to the l1-norm
minimization problem is required:

EQ-TARGET;temp:intralink-;e006;116;284ŝ ¼ min
X
j

sj1 such that ΦΨs ¼ y (6)

with the full image then reconstructed using

EQ-TARGET;temp:intralink-;e007;116;235x̂ ¼ Φŝ. (7)

Fig. 2 Representation of Eq. (5). The measurement vector y is calculated by multiplying the sens-
ing matrix, ΦM×N , by the image vector x , reducing the dimensionality of the data toM ≪ N values.
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2.3 cs-SFDI

Previous cs-SFDI applications have been based upon modifications to the detection side of
equipment setup. The camera is replaced with a DMD to display the sensing matrix patterns,
with the reflected light from the DMD focused upon the single-pixel photodetector. The meas-
urement matrix is therefore collected directly and the images for each of the frequencies and
phases are reconstructed before the traditional analysis process of demodulation, calibration and
optical fitting are performed to generate the optical property maps.

To test this methodology upon an increased heterogenic sample, an open source data set
from the University of Strasbourg was utilized.17 AppSFDI is a software package for analysis
of SFDI images and contains a sample data set of images from both a tissue mimicking
phantom and a biological sample of interest. To simulate the cs-SFDI detection for these
images, each image was converted to the signal matrix x from Eq. (4) and multiplied by the
full sensing matrix Φ, resulting in a measurement vector, y, for each image within the
AppSFDI data set.

The raw images where then reconstructed using l1-minimization and Eq. (7). As with the
previous study, these reconstructed images were then processed using the traditional analysis
procedure, performed as a pixel-by-pixel calculation, shown in Fig. 1(b). The resulting optical
property maps, from an increasing number of patterns used, were compared to those that were
collected using the non-compression-based method shown in Fig. 1(a).

2.4 CS-Based Parameter Recovery Algorithm

While the cs-SFDI method addresses the issue of pixel-wise detection, the analysis procedure is
also performed in a pixel-by-pixel manner, and hence, CS methods can also be applied to these
steps. Figure 1(c) shows a compression-based analysis procedure, with both the calibration and
parameter recovery performed within the compressed state. During the demodulation step
[Eqs. (1) and (2)], the pixel-by-pixel calculation is no longer linear, making the application
of CS non-trivial, although additional demodulation methodologies or CS for non-linear appli-
cations are areas for future study.18 Therefore, for this study, the use of previously demodulated
images was chosen to demonstrate the application of CS for the linear stages of the image analy-
sis and parameter recovery.

In this process, the demodulated images from the two spatial frequencies used within the
AppSFDI data set, 0 and 0.2 mm−1, are compressed using Eq. (5) forming the two measurement
vectors. These vectors are then normalized to the number of “on” pixels within each pattern of
the sensing matrix Φ. This process is repeated for the phantom images before both the calibra-
tion, using Eq. (3), and the optical fitting is performed. The normalization is then reversed before
the optical maps of μa and μ 0

s are reconstructed using the same procedure as outlined in the
cs-SFDI method. Once again, these maps are compared to the non-compressed method for a
variety of pattern numbers.

2.5 AppSFDI Data Set

The field of SFDI has been proactive in moving toward open source methodologies, with Open
SFDI providing full details of an open hardware system, while AppSFDI has produced soft-
ware and MATLAB code to analyze SFDI images for a variety of methods.14,19 Within the
AppSFDI software package, a typical data set of images is provided for testing and validating
analysis methods and algorithms, with these images used for this study. The use of open access
images for analysis comparison is common within other fields, such as hyperspectral imaging
for remote sensing, with data sets such as Indian Pines and Salinas valley.20 A variety of differ-
ent algorithms have been applied to these data sets over the past 25 years and can be easily
compared due to the same test data across many publications. This was the motivation for
using the AppSFDI data, which although contains only the one sample (back of the hand)
and one phantom for calibration, comparisons can still be made with any future advanced
analysis method.
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2.6 Error Calculations

To quantify the error between each different compression based reconstruction methods, the
root-mean-squared (RMS) error with respect to the non-compressed methodology has been
calculated using

EQ-TARGET;temp:intralink-;e008;116;680RMS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP ðA − BÞ2

N

s
� 100; (8)

where A and B are the normalized compression based and non-compressed recovered
maps, respectively. The normalization is with respect to the maximum pixel values for the
non-compressed images. Similarly, the RMS error on an individual pixel basis is calculated as

EQ-TARGET;temp:intralink-;e009;116;592RMS_Pixel ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðAl − BlÞ2

q
� 100; (9)

where Al and Bl are the normalized compression based and non-compressed recovered pixel
maps, respectively, which are again normalized with respect to the maximum pixel values for
the non-compressed image.

3 Results

The cs-SFDI application, where each of the raw images from within the AppSFDI data set was
compressed and reconstructed, was applied to a varying number of patterns. Each resized
64 by 64 pixel image requires 4096 individual pixel values to create the full image within
the traditional imaging modality. A full sensing matrix is therefore represented by 4096
patterns, and a reduction in measurements is performed using less patterns, i.e., 2048 patterns
is a 50% reduction in measurements. The cs-SFDI process was performed upon the AppSFDI
data for 820-3686 patterns, representing up to a 90% reduction in measurements required, at
10% reduction intervals. Figure 3 shows the optical property maps for a selection of pattern
numbers along with a ground truth obtained through the traditional SFDI analysis process,
with the RMS values also shown.

Full RMS values for both μa and μ 0
s are shown in Fig. 4. As expected, an increase in the

number of patterns used reduces the RMS error, while a greater number of patterns are needed
due to the increased heterogeneity than that observed in previous studies.7

While the cs-SFDI method has been previously tested with more homogenous two-tone tis-
sue-mimicking phantoms, the parameter recovery algorithm CS method has not been previously
studied for SFDI. Phantom measurements can be simulated using the analytical model from
Cuccia et al.1 as used in the calibration step, to generate the demodulated DC and AC images
from the 0 and 0.2 mm−1 spatial frequencies used within the AppSFDI data. These simulated
data sets are also 64 by 64 pixels in size and contain three different optical property anomalies.
The background pixel values have optical properties of μa ¼ 0.01 mm−1 and μ 0

s ¼ 1mm−1 with
an anomaly varying each of μa and μ 0

s, and the final anomaly varying both (Fig. 5). The optical
properties of the anomalies were increased by 50% compared to the background, and an
unchanged phantom of purely background values was generated for the calibration step of
the SFDI analysis procedure.

These images were then compressed using the same pattern numbers, following the analysis
workflow shown in Fig. 1. The resulting reconstructed images and RMS errors are shown in
Figs. 6 and 7, respectively.

The CS-based parameter recovery algorithm was then tested further using the AppSFDI
data once again. As with the other applications, pattern numbers were chosen to represent
a data reduction of up to 90%, in 10% steps. A sample of the reconstructed images for both
μa and μ 0

s are shown in Fig. 8, and the resulting RMS error for the different pattern numbers
in Fig. 9.
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Fig. 4 cs-SFDI RMS error results. RMS error for each optical property map obtained using the
cs-SFDI algorithm, compared to the non-compression based ground truth results.

Fig. 3 cs-SFDI image panel. Comparison between the original data and reconstructed images for
increasing pattern numbers.
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4 Discussion

Through the application of CS methodology to the SFDI process, the number of measurements
required to accurately reconstruct optical property maps can be reduced. For the cs-SFDI algo-
rithms, where the collection of compressed data is simulated for comparison to previous studies,7

the RMS error for both absorption and reduced scattering (Fig. 4) is <15% for 2048 and <10%
for 2867 patterns, representing a data reduction of 50% and 30%, respectively. While the original
study showed a data reduction of 90% still obtained the optical properties within 10% error, this
was taken using a simple two-tone phantom, which will have a much greater sparsity than the
hand sample used in this study. Therefore, the number of patterns required, and hence, the level
of data reduction achieved will always be lower with a data set that contains greater sparsity.
However, this does not represent the complex samples that are imaged using SFDI both within
research and clinical settings, such as burn wounds or pressure ulcers.21,22

While the cs-SFDI application, with the data collected directly in the compressed state,
addresses data reduction for the raw images, these images are still reconstructed to full size and
each pixel is analyzed to produce the optical property maps. The CS-based parameter recovery
algorithm applies CS to the analysis stage, reducing the number of calculations required to obtain
these maps. Phantom simulations were performed using the analytical solution to the diffusion
approximation, as developed by Cuccia et.al.1 As the same solution is used for the parameter
recovery algorithm, any resulting RMS error is from the compression algorithm only. For all
patterns tested the RMS error was below 6% for both μa and μ 0

s, while each of the
anomalies was clear (Fig. 6) for even the lowest pattern number tested, 410, representing a data
reduction of 90%. While this demonstrates a further application of CS to SFDI, and a novel
methodology for obtaining the optical property maps, as with the cs-SFDI technique, however,
the heterogeneity of the sample is low compared to research and clinical applications of SFDI.
The AppSFDI data set was again used, with the hand sample showing an increased heterogeneity
and analyzed using the procedure shown in Fig. 1(c).

Although an RMS error of <15% is observed for the lowest pattern number tested, 410, it is
clear from Fig. 8 that the sample is not distinguishable and any regions of interest, such as the
veins on the surface of the hand, cannot be resolved. However, an RMS error of <10% is
calculated for all subsequent pattern numbers, and the features of the hand sample are visible
from 1229 patterns as shown in Fig. 9. These maps were calculated using a 70% reduction in
parameter recovery calculations, producing a significant data reduction compared to the full
uncompressed analysis procedure. Additional data reduction methods have been previously
applied in the form of pixel binning.23 Such pixel binning method could also be applied

Fig. 5 Analytical anomaly ground truth maps for the CS parameter recovery phantom test.
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Fig. 7 Simulated data CS parameter recovery algorithm RMS error results. RMS error for each
optical property map obtained using the data CS parameter recovery algorithm, compared to
the non-compression based ground truth results.

Fig. 6 Simulated data CS parameter recovery algorithm image panel. Comparison between
the original data and reconstructed images for increasing pattern numbers.
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Fig. 9 AppSFDI CS-based parameter recovery algorithm RMS errors. RMS error for each optical
property map for the CS-based parameter recovery algorithm, compared to the non-compression–
based ground truth results.

Fig. 8 AppSFDI CS parameter recovery algorithm image panel. Comparison between the original
data and reconstructed images for increasing pattern numbers.
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in conjunction with the CS algorithms used within this work, although maintaining original
single-pixel values for reconstructions preserves the resolution and contrast of the original
images, validating the contribution of CS for data reduction purposes as compared to other
methodologies.

A pixel-wise RMS map calculated using Eq. (9), for both absorption and reduced scattering,
demonstrates the locations upon the hand sample corresponding to the greatest error (Fig. 10).
The pixels with the highest error, >40%, align with the edge regions of the hand and back-
ground, where the greatest variance in optical property values occur. Within traditional SFDI
image reconstruction, edge detection errors are common due to the challenges faced by surface
curvature and discontinuity errors related to model-based assumptions of the technique, which
can be addressed through the use of profilometry correction methods.24 However, for this study,
the ground truth values and corresponding error calculations are performed against the recovered
images as determined from traditional methods and not the tissue ground truth values them-
selves. Therefore, the edge errors observed are due to a caveat of the l1-norm minimization
by which the edges and boundaries of the largest optical property gradients are oversmoothed,
producing the larger error compared to the ground truth maps. Additional reconstruction algo-
rithms, such as total variation regularization are known to produce sharper images due to the
improved boundary preservation, although are more computationally difficult and will be con-
sidered in future studies.10

The AppSFDI data set only contains images of a single wavelength, therefore limiting the
possible benefit of CS approaches. From optical property maps at multiple wavelengths, quan-
titative maps of tissue properties such as oxy- and deoxyhemoglobin can be produced, therefore,
SFDI is most commonly used for two or more wavelengths. Traditionally, this has required
illumination using multiple sources, each of an individual wavelength, increasing the number
of measurements required, and hence the number of pixel-wise analysis calculations.
Commercial systems, such as the Reflect RS™ from Modulim, contain nine different LEDs,
and other systems contain multiple wavelengths based on previously optimized values for
obtaining different tissue property maps.3 While it is possible to obtain these maps for only two
wavelengths, the wavelength optimization performed is highly dependent on the assumed tissues
properties, and therefore limited in the range of biological samples they can accurately obtain.
Therefore, with the use of additional wavelengths, the number of calculations required to fit for
both μa and μ 0

s at each individual pixel and wavelength increases, and hence the data size. The
application of the CS-based parameter recovery algorithm would reduce the number of calcu-
lations required by up to 70% as previously stated, which would also propagate across each
wavelength used.

Fig. 10 Pixel-wise RMS error for 50% measurement reduction using the CS parameter recovery
algorithm.
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5 Conclusion

While CS has been applied to SFDI previously, this study has highlighted an additional appli-
cation during the parameter recovery stage alongside the use of the cs-SFDI algorithm on
increased heterogenic data, as seen within clinical applications. It has shown that the number
of measurements required, while still maintaining an optical property error of <10% can be
observed with as much as a 90% data reduction during the parameter recovery stage. Due
to the increased heterogenicity, and hence, sparsity of the sample the cs-SFDI application to
the image acquisition stage only provides a data reduction of 30%, however, current advanced
imaging methods, such as SSOP, already greatly reduce the data required during the initial image
acquisition. Overall, these CS-based SFDI methods provide a novel application toward data
reduction and merit further investigation upon physical samples working toward multi- and
hyperspectral SFDI systems.
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