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Abstract

Significance: Automatic, fast, and accurate identification of cancer on histologic slides has
many applications in oncologic pathology.

Aim: The purpose of this study is to investigate hyperspectral imaging (HSI) for automatic
detection of head and neck cancer nuclei in histologic slides, as well as cancer region identi-
fication based on nuclei detection.

Approach: A customized hyperspectral microscopic imaging system was developed and used to
scan histologic slides from 20 patients with squamous cell carcinoma (SCC). Hyperspectral
images and red, green, and blue (RGB) images of the histologic slides with the same field
of view were obtained and registered. A principal component analysis-based nuclei segmentation
method was developed to extract nuclei patches from the hyperspectral images and the coregis-
tered RGB images. Spectra-based support vector machine and patch-based convolutional neural
networks (CNNs) were implemented for nuclei classification. The CNNs were trained with RGB
patches (RGB-CNN) and hyperspectral patches (HSI-CNN) of the segmented nuclei and the
utility of the extra spectral information provided by HSI was evaluated. Furthermore, cancer
region identification was implemented by image-wise classification based on the percentage
of cancerous nuclei detected in each image.

Results: RGB-CNN, which mainly used the spatial information of nuclei, resulted in a 0.81
validation accuracy and 0.74 testing accuracy. HSI-CNN, which utilized the spatial and spectral
features of the nuclei, showed significant improvement in classification performance and
achieved 0.89 validation accuracy as well as 0.82 testing accuracy. Furthermore, the image-wise
cancer region identification based on nuclei detection could generally improve the cancer detec-
tion rate.

Conclusions: We demonstrated that the morphological and spectral information contribute to
SCC nuclei differentiation and that the spectral information within hyperspectral images could
improve classification performance.
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1 Introduction

Head and neck cancer (HNC) is the sixth most common cancer worldwide. Squamous cell
carcinoma (SCC), which is a major type of cancer at the original sites of the upper aerodigestive
tract, takes about 90% of HNC cases.1–3 It can occur in multiple organs including the nasopharynx,
oral cavity, oropharynx, nasal cavity, paranasal sinuses, hypopharynx, larynx, and trachea.4–6 And
histologic slides of SCC tissues are important for its histopathological analysis and diagnosis.
Computer-aided pathology has been emerging in recent years. It is intended to provide a fast,
reproducible, and quantitative diagnosis. Many studies have been carried out to investigate auto-
matic cancer detection in digitalized histologic images using deep learning approaches.7–10 In these
studies, image patches cropped from the whole-slide images were used to train a deep and rather
complex neural network architecture, which learned to recognize the sophisticated histological
structures all over the slides, as shown in Fig. 1. Due to the anatomical diversity of the histologic
slides, these works usually use a large image patch size to ensure that enough morphological infor-
mation is included in the patches. In addition, such deep learning methods always require a large
training dataset in order to achieve effective classification. Despite the overall good classification
results that can be obtained in the whole slide, some regions can still be misclassified, especially
those near the tumor-normal margin and those with very few nuclei.7

On the other hand, SCC nuclei appear with certain characteristics, such as the variation in
nuclei shape, increased nuclei size, atypical mitotic figures, increased number and size of
nucleoli, and hyperchromasia.11 In addition to the abovementioned morphological features,

Fig. 1 Anatomical diversity of cancerous and normal tissue in one histologic slide. (a) A digital
histologic image of an hematoxylin and eosin (H&E)-stained slide of SCC at the larynx. The green
contour indicates cancer, and the rest of the tissue is normal. The patches of cancerous and nor-
mal tissue shown on the left and right panels are extracted from this image (a). (b)–(d) Patches
showing various histological features of SCC, including keratinizing SCC, enlarged SCC nuclei
with shape variation, and SCC with chronic inflammation (from top to bottom). (e)–(g) Patches
showing different normal structures, including stratified squamous epithelium, tissue with chronic
inflammation, and salivary glands (from top to bottom).
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the color of SCC nuclei, which is related to the optical density of hematoxylin and reflects chro-
matin condensation, is also an important factor for histological diagnosis.12,13 Nandini and
Subramanyam14 carried out computer-assisted microscopic image analysis to evaluate the cor-
relation between nuclear features and histologic grading of oral SCC and proved the reliability of
nuclear morphometry. In our previous work,7 an inception-based convolutional neural network
(CNN) was implemented for whole-slide cancer detection in an SCC dataset of 156 patients and
a gradient class-activated map (grad-CAM) technique was applied to visualize the critical com-
ponents in the input images. Our results showed that the network made decisions by looking at
the nuclei in the image patches and identifying a few highly suspicious cancerous nuclei. Both
studies indicate that the nuclei provide critical information for the classification. Such cancer-
related features may improve the diagnosis in suspicious regions. In this study, we hypothesize
that by classifying nuclei identified and extracted from the digitized images of histologic slides,
we can achieve SCC detection in the histologic slides. Tens of thousands of nuclei with varied
shapes, sizes, and colors can be extracted in even one histologic slide and this provides a large
amount of training data for a neural network. It can also simplify the network architecture
compared with those used for whole-slide image classification with the reduced complexity
of anatomical structures in the image patches.

Nuclear segmentation and classification in histologic images have many applications but
remain challenging tasks with only the color and shape information. Hyperspectral imaging
(HSI) is an optical imaging technology that acquires a three-dimensional (3D) data cube with
two spatial dimensions and one spectral dimension. In other words, HSI is able to provide the
morphological information and abundant spectral information of nuclei within one image modal-
ity. Besides, utilizing HSI in microscopy can extend the three-band RGB color information of the
histologic slide into a wide spectral dimension, which possibly offers more details to improve the
classification performance. HSI has the potential to serve as a tool to improve the effectiveness
and accuracy of pathologic diagnosis. It gained increasing attentions in recent years and was
investigated in many studies.15–23 Wang et al.24 used hyperspectral images to identify lympho-
blastic leukemia cells by applying a marker-based neural network classification along with spec-
tral and spatial feature extractions and obtained an accuracy of 92.9%. In our previous study,
Ortega et al.25 implemented a CNN for breast cancer cell detection in digitized hyperspectral
histological images. Despite the small dataset used in this study, the comparison between HSI
and RGB showed the potential of HSI to improve the classification performance. Kopriva et al.19

evaluated the feasibility of HSI for the diagnosis of colon cancer metastasis in the liver from five
H&E stained specimens collected from the same patient. Spectral angle mapper was used for a
pixel-level classification in the hyperspectral histological images and yielded accuracy between
86.85% and 96.92%. Nakaya et al.18 conducted colon cancer detection in H&E-stained spec-
imens by classifying the average spectra of nuclei with a support vector machine (SVM).
Unsupervised clustering methods were implemented by Khouj et al.26 for ductal cancer detection
using HSI. The results of the abovementioned works all proved the usefulness of the spectral
information from the hyperspectral histologic images. However, the classification in these stud-
ies was implemented either by manually annotating and extracting nuclei from the images, which
was extremely time-consuming, or based on the spectra from the whole slide. Using the spectra
of the entire slide greatly increase the total volume of dataset, especially when the images are
acquired with high magnification. Even though SCC nuclei carry many significant cancer-related
features11 and have been proved to play a critical role in whole-slide cancer detection,7 only
using the spectra of the SCC nuclei with a simple spectra-based classification would not achieve
a very good detection rate for SCC,27 mainly due to the spectral disparity of different SCC nuclei
with a large shape variation. Moreover, the hyperspectral microscopy systems in many studies
were based on a line-scanning hyperspectral camera, which has to be synchronized with a motor-
ized stage.18,28,29 A spectral-scanning hyperspectral microscopy system, which utilized a mono-
chromator as the spectral-scanning component, was developed for oral cancer diagnosis.30 Both
of the abovementioned systems needed a tradeoff between system complexity and resolution.

In this study, we investigate the automatic detection of head and neck SCC nuclei in hyper-
spectral histology images, as well as the feasibility of cancer region identification in histologic
slides based on nuclei detection. First, we utilized a custom-made hyperspectral microscopic
imaging system, which is able to acquire both HSI and RGB images and does not require any
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motorized stage or spectral scanning component. The compact design is convenient for clinical
use, and the combination of two image modalities is easier for pathologists to accept since RGB
histology imaging is the current routine in the workflow. Second, a simple-yet-effective auto-
matic nucleus extraction method based on principal component analysis (PCA) is proposed to
locate and extract nuclei from the hyperspectral histological images, with no need for manual
pathologist annotation or complicated segmentation network training. Third, we carried out
spectra-based classification of the extracted nuclei using SVM, as well as patch-based classi-
fication using a CNN, to investigate the ability of HSI to discriminate cancerous nuclei and
normal nuclei for SCC. In our previous study,27 nuclei classification using HSI patches and
HSI-synthesized RGB patches were compared. In this work, both HSI and RGB images were
acquired in the same setting. Therefore, we were able to compare the classification performance
using HSI and real RGB patches of the nuclei to evaluate the usefulness of the extra spectral
information in HSI. We compare the classification performance using the spectral information,
spatial information, and both information of nuclei, to analyze how they contribute to the differ-
entiation of nuclei, respectively. To understand the usefulness of the rich spectral features in HSI
is a critical step for this technology to be accepted and employed in the digital pathology field.
The quantitative comparison results reveal the “value” of both the morphological features and
spectral features of SCC nuclei, thus potentially promoting the integration of HSI in the pathol-
ogy workflow. Furthermore, we proposed a cancer detection workflow comprising automatic
nuclei segmentation, nuclei classification, and image-wise cancer region identification, which
could potentially work as a diagnostic tool and significantly increase the cancer detection rate in
some suspicious regions, where a whole-slide classification network may fail to give an accurate
prediction.

2 Methods

2.1 Histologic Slides from Head and Neck SCC Patients

Twenty-six H&E-stained histologic slides were obtained from larynx, hypopharynx, buccal
mucosa, and floor of mouth (FOM) of 20 different head and neck SCC (HPV-negative)
patients, as we previously described.7,31 There were three types of slides, namely T, N, and
TN. The tissue of each TN slide was resected at the tumor-normal margin, containing both
cancerous and normal tissues, while a T slide contains only cancerous tissue, and an N slide
is normal tissue. The TN slide was first selected for each patient, but for six patients whose TN
slide did not contain enough cancerous or normal tissue, a T slide or N slide would be included
to balance the data. All slides were previously digitized with 40× objective magnification and
manually annotated by a board-certificated pathologist. In this work, we used the annotated
cancerous and normal regions in the digital histology images as ground truth for data selection
and classification.

In this study, we manually selected regions of interest (ROIs) for both types of tissue for
hyperspectral image acquisitions. For each slide, we chose at least three ROIs in the cancerous
region annotated by the pathologist who specialized in HNC. We also selected at least three ROIs
for the normal tissue. Considering the potential interpathologist variation of the histological
diagnosis, both cancerous and normal ROIs were away from the edge of the annotation to avoid
any interface area. In addition, there should be adequate nuclei in the images for extraction and
classification; therefore, the selected cancerous ROIs were at or close to the cancer nests, where a
mass of cells extends to the surrounding area of cancerous growth. The selected normal ROIs
were from the healthy stratified squamous epithelium that is far away from the cancerous
regions. To make the cancerous nuclei and normal nuclei comparable, we only extracted normal
nuclei from the second and third layers of the stratified squamous epithelium, from which the
SCC cells originally arise. On average, over 750 nuclei were extracted for each patient, including
cancerous and normal nuclei. In total, we collected 257 hyperspectral images (119 normal and
136 cancerous), from which around 15,000 nuclei were later extracted. Figure 2 shows the
synthesized RGB images from the hyperspectral images of some representative cancerous and
normal ROIs.
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2.2 Image Acquisition of Histologic Slides

The histological slides were scanned using our custom-made hyperspectral microscopic imaging
system, which contains a transmitted-light microscope, a hyperspectral camera, and a color cam-
era, as has been reported in our previous study.23,27 The HSI camera acquired hyperspectral
images with 87 bands in the wavelength range from 470 to 720 nm. A color camera was added
to the system via an additional optical port on the microscope. The hyperspectral camera and the
color camera were tuned to be par-focal, and they shared the same field of view (FOV) with slight
differences around the edges due to the different sensor sizes. The light path of the microscope is
shown in Fig. 3(a). The spatial size of the hyperspectral images was 2048 × 2048 pixels while
that of the RGB images was 3072 × 2048 pixels. The FOVof the hyperspectral camera under a
40×magnification was about 285 μm × 285 μm, with a spatial resolution of 139 nm∕pixel. Two
cameras were synchronized, so that both hyperspectral images and RGB images of the same
region were acquired altogether along with the scanning of the slides.

Before acquiring images of the histologic slides, we first implemented system calibration by
imaging a microscopic calibration target, as shown in Fig. 3(b). Both the hyperspectral image
and RGB image were transferred to grayscale images, and then the RGB-synthesized grayscale
image was registered to the HSI-synthesized grayscale image using affine registration with the
oriented FAST and rotated BRIEF feature detector32 from the OpenCV2 package. The obtained
registration matrix was saved as the system calibration matrix, and for each pair of hyperspectral
and RGB images that was acquired during slide scanning, we registered the RGB image to the
matching hyperspectral image using this matrix, as shown in Fig. 3(c). Note that the “HSI”
images in Figs. 3(b)–3(c) are RGB images synthesized from hyperspectral images, which will
be explained in the next section.

Before the image acquisition, a blank area on the slide without any tissue or dust was
selected. Under the same illumination and focusing setting as during the slide scanning, we first
set the white balance of the color camera based on this area, then a hyperspectral image of the
same region was taken and used as the white reference image. Dark balance of the color camera
was set by blocking the objective lens, and the hyperspectral dark reference image was acquired
automatically by the hyperspectral camera along with the acquisition of the tissue images.

Because our hyperspectral microscopic imaging system is based on transmitted-light micros-
copy, the pixel values in the acquired images are related to the intensity of the transmitted light

Fig. 2 Synthesized RGB images from HSI, which show some representative regions selected for
nuclei extraction and quantitative testing. (a)–(d) Normal regions centered at the second and third
layers of the healthy stratified squamous epithelium. (e)–(h) Cancerous regions at or close to
cancer nests.
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from the histologic slides. All hyperspectral images of the tissue were calibrated with the white
reference image and dark reference image to obtain the normalized transmittance of the slides, as
follows:

EQ-TARGET;temp:intralink-;e001;116;426TransmittanceðλÞ ¼ IRawðλÞ − IDarkðλÞ
IWhiteðλÞ − IDarkðλÞ

; (1)

where TransmittanceðλÞ is the normalized transmittance at the wavelength λ, IrawðλÞ is the inten-
sity value in the raw hyperspectral image, IwhiteðλÞ and IdarkðλÞ are the intensity values in the
white and dark reference images, respectively.

To visualize the selected ROIs, we synthesized RGB images from the hyperspectral data
using our customized transformation function, which was made up of multiple cosine functions,
as shown in Fig. 4(a). We developed it based on the spectral response of human eye perception to
colors,33 but we modified the channel weights for red (R), green (G), and blue (B) due to the
absence of the wavelength bands in 380 to 470 nm in our hyperspectral camera. To compensate
the absent wavelength bands and balance the colors, we increased the channel weights of red
within 380 to 500 nm and the channel weights of blue within 380 to 550 nm. In addition, the
colors that we see through our eyes are influenced by the human eye color perception and
the spectral signature of the light source. However, the image calibration in Eq. (1) has removed
the influence of light source from the hyperspectral images. Therefore, to have the color of the
synthesized RGB images as real as possible, we took the light source into consideration and
slightly increased the channel weight of the red region from 500 to 720 nm, because the irra-
diance of the halogen light source is higher in the red-color wavelength range. After applying this
customized transformation, the synthesized RGB image was multiplied with a constant of two to
adjust the brightness. The synthesized RGB images offer higher contrast and clear visualization
of the cellular structures than a single band within the hyperspectral image; and the color was
close to the original RGB histologic images, as shown in Figs. 4(b) and 4(c).

2.3 Automatic Nuclei Segmentation

SCC nuclei exhibit various cancer-related information. Therefore, by extracting nuclei from the
whole slide and implementing cancer detection based on nuclei classification, we can potentially
avoid the redundancy of information. Here, we propose a nuclei segmentation method based on

Fig. 3 Image acquisition and registration. (a) Diagram of the microscope light path. (b) System
calibration by registering the hyperspectral image and the RGB image of the microscopic calibra-
tion target. (c) Registering each pair of hyperspectral image and RGB image of the slide by apply-
ing the previously obtained registration matrix on the RGB image.
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PCA. PCA is a multivariate technique for spectral data analysis. It projects the high-dimensional
spectral data into a lower-dimensional space and removes the correlation among the wavelength
bands. Therefore, it is able to extract the principal component images that have the highest vari-
ance, in other words, the highest contrast.34,35 Due to the fact that nuclei are stained by hema-
toxylin and cytoplasm is stained by eosin,36 the different optical absorption properties of the two
stains can be used by PCA to form distinctive principal components, where the contrast between
nuclei and cytoplasm may be increased.

To implementing PCA on the hyperspectral data, each 87-band hyperspectral image was
reshaped to a two-dimensional (2D) matrix with 87 vectors. Then, PCA calculation was carried
out on the matrix in MATLAB® (MathWorks Inc., Massachusetts, United States). Because of the
spectral distinction among the nuclei, cytoplasm, and background, the top three principal com-
ponents (PCs) highlight these three parts separately, as shown in Figs. 5(a)–5(c). Afterward, we
normalized PC1, PC2, and PC3 with their maximum and minimum values

Fig. 5 PCA-based nuclei segmentation. (a) The first PC after image normalization (PC1_norm),
where pixels of nuclei have lower values than those of cytoplasm and background. (b) The second
PC after normalization (PC2_norm), where nuclei pixels have high values than those of cytoplasm
and background. (c) The normalized third PC (PC3_norm) that highlights the background. (d) The
difference image by subtracting PC1_norm from PC2_norm.

Fig. 4 Synthesize RGB image from the hyperspectral data. (a) Customized transformation func-
tion for synthesizing an RGB image from a hyperspectral cube, modified from the human eye
spectral response for red (R), green (G), and blue (B). The gray area shows the unavailable wave-
length range of our hyperspectral camera. (b) A hyperspectral cube and its synthesized RGB
image using the transformation in (a).
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EQ-TARGET;temp:intralink-;e002;116;735PCi_Norm ¼ PCi −minðPCiÞ
maxðPCiÞ −min PCiÞ ; (2)

where PCi is the i’th principal component, PCi_Norm is the normalized PCi, minðPCiÞ is the
lowest value in PCi, and maxðPCiÞ is the highest value in PCi.

Although the nuclei in PC1 seem to be distinct, it is not easy to segment them with a hard
threshold. Since the pixels of nuclei in PC1 have a lower value than those of cytoplasm and
background, while the pixels of nuclei in PC2 have a higher value, the difference between the
normalized PC2 and PC1 (PC2_norm − PC1_norm) yields an image with a high contrast of
nuclei and other components, as shown in Fig. 5(d). Generally, the pixels of nuclei have positive
values, while those of cytoplasm have negative values, with very a slight difference among vari-
ous slides. Therefore, a binary mask can be easily generated with the difference image and a hard
threshold to segment nuclei from the slides. Considering the general size of nuclei, the seg-
mented components with a very small area were removed. For several overlapped nuclei, we
could use a watershed algorithm37,38 to separate them. It is worth noting that the shape of each
segmented nucleus in the generated binary mask might not be very precise, but with this method,
we were able to easily locate most of the nuclei and extract them from the hyperspectral images.

After applying the PCA-based nuclei segmentation method, the centroids of all segmented
nuclei were identified. Because the RGB images were aligned with the hyperspectral images, the
identified nucleus centroids also match the locations of nuclei in the registered RGB images.
Hyperspectral and RGB patches centered at the centroids were extracted from the images. The
patch size was set as 101 × 101 pixels, which was large enough to include the enlarged SCC
nuclei and a few overlapped nuclei that were hard to separate. Afterward, we reviewed all
extracted nucleus-centered patches and removed a few outliers that were out of focus. For any
nucleus that was extracted from the top or bottom margin area of the registered RGB image,
which was filled with black color, the hyperspectral patch and RGB patch of this nucleus would
be removed from the dataset. Table 1 shows the final number of cancerous and normal nuclei
patches that were extracted from each patient.

2.4 Spectra-Based SVM Classification

For a straightforward investigation of the distinction ability of nuclei spectra, we obtained the
average spectra of all extracted nuclei and carried out spectra-based nuclei classification using an

Table 1 Number of cancerous and normal nuclei extracted from each patient.

Patient # 1 2 3 4 5 6 7 8 9 10

Organ Larynx

Normal images 5 6 3 6 6 4 6 4 9 7

Normal nuclei 398 215 105 168 194 277 176 220 444 372

Cancer images 7 6 5 3 3 4 6 8 3 14

Cancer nuclei 551 494 198 158 416 328 279 187 378 779

Patient # 11 12 13 14 15 16 17 18 19 20

Organ Larynx Hypo Buccal mucosa FOM

Normal images 11 7 7 10 6 3 5 6 5 3

Normal nuclei 935 318 403 488 312 518 189 405 279 126

Cancer images 6 13 12 7 6 10 5 6 8 6

Cancer nuclei 460 463 695 521 477 465 574 210 302 252

Hypo: hypopharynx; FOM: floor of mouth.
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SVM classifier. Although the PCA-based nuclei segmentation method could provide a rough
binary mask that helped with the localization of nuclei in the image, the mask was not exactly
accurate and might contain some cytoplasm pixels. To have precise spectral signatures of merely
the nuclei, we manually and carefully delineated the margin of each nucleus in the extracted
nucleus-centered patches, and the average spectrum of all pixels in each outlined nucleus was
calculated, as shown in Fig. 6(a). The red curve shows the average transmittance spectrum of the
outlined nucleus on the left, and the blue curve is the spectral signature of a blank area on the
glass slide with no tissue, which shows an even transmittance across the whole wavelength range
after the white reference calibration. The pink arrow indicates the location of the absorbance
peak of eosin dye, while the blue arrow points at the absorbance peak of hematoxylin
dye.39 Because of the thickness variation of the tissue, the amplitudes of nuclei transmittance
spectra can be different. Therefore, each average spectrum was then normalized by being divided
by a constant, which was the sum of the spectrum at all wavelengths

EQ-TARGET;temp:intralink-;e003;116;580SNðλÞ ¼
SðλÞ

P
λSðλÞ

; (3)

where SðλÞ and SNðλÞ are the transmittance value and normalized transmittance value at wave-
length λ.

Figure 6(b) shows the transmittance spectra of cancerous nuclei and normal nuclei from one
patient. Specifically, the epithelium tissue in this slide was relatively thick, and the normal nuclei
had a very dark color probably caused by overstaining, which resulted in lower values of the
transmittance spectra. However, after spectral normalization, the spectral signatures of cancerous
nuclei and normal nuclei became more comparable. It could be seen that the values of cancerous
nuclei spectra were higher in the wavelength range from 470 to 640 nm, and then became lower

Fig. 6 Average nuclei spectra extraction and normalization. (a) The average spectrum of a
nucleus in an extracted image patch. (b) Average transmittance spectra of cancerous nuclei and
normal nuclei from patient #16. The epithelium in this slide was thick and the nuclei were stained
dark, which caused lower values of normal nuclei spectra. (c) Average normalized transmittance
spectra of patient #16.
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after 650 nm. The same trend of nuclei spectra was also observed in many other patients, which
means that the spectral signatures of nuclei could provide some distinction.

The normalized average spectra of nuclei were used for the training and validation of an SVM
classifier. The SVM was implemented with a radial basis function kernel using MATLAB.
Leave-one-patient-out cross-validation was carried out, each time the spectral data from 19
patients were used for training, and the spectra from one patient for validation. Grid search was
carried out for SVM hyperparameters C and g over the range of log2 C ¼ f−1; 0; : : : ; 4g
and log2 g ¼ f−1; 0; : : : ; 4g.

2.5 Patch-Based CNN Classification

After the segmentation of nuclei and the generation of nucleus-centered patches, the patches
were used for the training, validation, and testing of a 2D CNN. The CNN was implemented
using Keras with a Tensorflow backend on a Titan XP NVIDIA GPU. It consisted of eight stan-
dard 2D convolutional layers, two max pooling, one average pooling, and two fully connected
layers, as shown in Fig. 7 and Table 2. The numbers above the feature maps in Fig. 7 indicate the
number of filters. The output had two classes, i.e., cancerous and normal. Except for the first
convolutional layer that had a kernel size of 5 × 5, all other convolutional layers had a kernel size
of 3 × 3. The strides of all convolutional layers were 1 × 1, and that of the max pooling layers
was 2 × 2. All convolutional layers were initialized with the “Glorot-normal” kernel initializer.
The rectified linear unit (ReLU) activation as well as a 10–30% dropout was applied following
each convolutional layer. We tried using batch normalization and L2 regularization for the con-
volutional layers, but they did not improve the training and validation results in this study. The
optimizer was Adam40 with an initial learning rate of 10−5 as well as decay parameters beta_1 =
0.9 and beta_2 = 0.999. The loss function was binary cross-entropy. The network was trained
with a batch size of 16 for 7 to 27 epochs, depending on when the validation accuracy stopped
increasing.

As specified in Table 2, the same CNN architecture was used for hyperspectral and RGB
patches to compare the classification performance and evaluate the usefulness of extra spectral
information in the hyperspectral images. The network that was trained with hyperspectral
patches, namely the HSI-CNN, had an input size of 101 × 101 × 87, and the one with RGB
patches, namely the RGB-CNN, had an input size of 101 × 101 × 3. These two networks were
tuned separately to avoid bias of optimization, although the learning rate and decay rate turned
out to be the same.

All nucleus-centered image patches were split into training, validation, and testing groups to
evaluate the network. The same data partition was used for both HSI-CNN and RGB-CNN. We
carried out eightfold cross-validation, each time nuclei patches from 14 patients were used for
training and those from two patients were used for validation. Four randomly selected patients
were left out as an independent testing group, including 2068 nuclei patches extracted from 44
images. The data of one patient have never been used in the training, validation, or testing group
at the same time. In addition, all training patches were four times augmented by rotating. Table 3

Fig. 7 The 2D-CNN for patch-based nuclei classification, with eight standard 2D convolutional
layers, two max pooling layers, one average pooling layer, and two fully connected layers.
The input size is 101 × 101 × N , where N ¼ 3 for RGB patches and N ¼ 87 for HSI. Numbers
above each figure map show the number of filters.

Ma et al.: Automatic detection of head and neck squamous cell carcinoma on histologic slides. . .

Journal of Biomedical Optics 046501-10 April 2022 • Vol. 27(4)



shows the number of images and nuclei patches that were used in each fold before data
augmentation.

For validation and testing, nucleus-centered patches were also four times augmented by rotat-
ing and reflecting. Then, the average probability of each nucleus-centered patch was calculated
across all the four augmented versions of the patch. The optimal threshold levels were deter-
mined based on the receiver operator characteristic curves for validation data in different folds,
and the same threshold was applied to all validation data in the same fold. Finally, the network
with the best validation results was selected and tested on the testing data group.

Table 3 Data partition for cross-validation.

Validation
fold

No. of images
for training

No. of nuclei for training
(before augmentation)

No. of images
for validation

No. of nuclei for validation
(before augmentation)

1 189 11,003 24 1658

2 193 11,569 20 1092

3 196 11,446 17 1215

4 189 11,779 24 862

5 180 10,688 33 1973

6 176 10,485 37 2176

7 177 10,554 36 2107

8 191 11,283 22 1378

Table 2 2D CNN architecture for patch-based nuclei classification.

Layer Kernel/strides/padding Output size

Input Input image patch 101 × 101 × N

Conv 5, 1, “valid” 97 × 97 × 256

Conv 3, 1, “valid” 95 × 95 × 256

Max pool 2, 2, “valid” 47 × 47 × 256

Conv 3, 1, “valid” 45 × 45 × 384

Conv 3, 1, “valid” 43 × 43 × 512

Conv 3, 1, “valid” 41 × 41 × 768

Max pool 2, 2, “valid” 21 × 21 × 512

Conv 3, 1, “valid” 19 × 19 × 768

Conv 3, 1, “valid” 17 × 17 × 1024

Conv 3, 1, “valid” 15 × 15 × 1536

Conv 3, 1, “valid” 13 × 13 × 2048

Average pool 13, None, “valid” 2048

Fully connected (ReLU) Dense 2048

Fully connected (Sigmoid) Dense 1

N ¼ 87 for HSI patches and N ¼ 3 for RGB patches.
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2.6 Image-Wise Classification

When doing whole-slide image classification for cancer detection, the appearance of suspicious
cancerous nuclei in the image patches is a key factor for the network to make cancer prediction,
even if the network was not trained to look for nuclei on purpose.7 But with the relatively low
magnification (usually 10×), it may miss some of the morphological features and spectral infor-
mation of nuclei, especially for the regions where few nuclei exist, thus leading to some mis-
classification. Theoretically, a region should be diagnosed as cancerous even if only one
cancerous cell is found in it. Therefore, we propose to use the cancerous nuclei detection results
for an image-wise cancerous region identification, which can potentially assist the diagnosis of
the slide, especially in the regions where a whole-slide classification network is not able to
achieve a precise decision making. Moreover, the FOV under a high magnification is small
(<0.3 mm × 0.3 mm in this study), so the resolution of an image-wise classification would still
meet the need for tumor margin detection.

In this study, image-wise classification was implemented based on the percentage of cancer-
ous nuclei detected in each image. After extracting the nuclei patches using our proposed PCA-
based segmentation method and carrying out patch-based nuclei classification using the CNN,
the percentage of detected cancerous nuclei among all nuclei within each hyperspectral image
was calculated. If the percentage of cancer nuclei in this image was above a certain threshold, the
corresponding region on the histological slide would be considered as cancerous. Theoretically, a
region should be taken as cancerous even if only one cancer cell exists there. However, con-
sidering the possible false positives in nuclei classification, we employed five different thresh-
olds with relatively small values (1%, 5%, 10%, 20%, and 30%), and counted how many images
in the validation data groups were correctly classified. The threshold value that resulted in the
best image-wise classification among the validation data would finally be applied to the testing
data. It is worth noting that in this study, the number of segmented nuclei from different images
can be different, e.g., from 6 nuclei per image to near 200 per image, depending on the major
histological structure in the image. For example, some images of the cancerous tissue may con-
tain a large SCC pearl, or much more lymphocytes than SCC nuclei due to chronic inflammation,
resulting in a very small number of nuclei in the images. For images of the normal tissue, thin
epithelium could also result in a small number of extracted nuclei. Therefore, the threshold deter-
mined for image-wise classification based on images with different base numbers of nuclei
should work for any region, even those that get misclassified due to the small quantity. We
counted the number of images in the validation groups with a different number of nuclei detected
from them. In total, there were four images with very few (<10) nuclei, 12 images with 11 to 20
nuclei, 90 images with 21 to 50 nuclei, 88 images with a decent number (51 to 100) of nuclei, and
19 images with >100 nuclei.

2.7 Evaluation Metrics

Before the image acquisition, we carefully selected imaging ROIs in the histological slides
according to the manual reference standard of pathologists specialized in HNC. Cancerous
regions were selected from or close to the cancer nests, and normal regions were chosen from
stratified squamous epitheliums far from the identified tumor-normal margin. In addition, all
segmented nuclei were reviewed to make sure that nuclei extracted from cancerous regions were
truly cancerous and those from the normal regions were truly normal. After the nuclei extraction,
we looked through the nucleus-centered image patch dataset and removed the outliers.

In this study, we use the area under the receiver operating characteristic curve (AUC) as well
as the overall accuracy, specificity, and sensitivity to evaluate the nuclei classification perfor-
mance, as defined by Eqs. (4)–(6). Accuracy is defined as the ratio of the amount of correctly
labeled nuclei to the total number of nuclei in the group. Specificity and sensitivity are calculated
from true positive (TP), true negative (TN), false positive (FP), and false negative (FN), where
positive corresponds to cancerous and negative to normal

EQ-TARGET;temp:intralink-;e004;116;104Accuracy ¼ TPþ TN

TPþ FPþ TNþ FN
; (4)
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EQ-TARGET;temp:intralink-;e005;116;723Sensitivity ¼ TP

TPþ FN
; (5)

EQ-TARGET;temp:intralink-;e006;116;691Specificity ¼ TN

TNþ FP
: (6)

3 Results

3.1 Nuclei Segmentation Results

With the proposed PCA-based nuclei segmentation method, binary masks of nuclei were gen-
erated, which could separate nuclei from the cytoplasm and background, as shown in Fig. 8. The
Fig. 8(a) shows the masks of normal nuclei in the images of healthy epithelium, and Fig. 8(b)
shows the masks of cancerous nuclei in cancerous tissues. Because of the slight spectral dis-
tinction and the small size, lymphocytes were not segmented. The results show that our proposed
method can segment most nuclei in the image. Due to the thickness of the tissue slide, some
nuclei at different layers might be out-of-focus and were not as distinct as the in-focus nuclei, and
these blurry nuclei were hardly segmented. But this could potentially be solved if automatic
focusing and image quality enhancement methods for hyperspectral microscopic imaging can
be improved. Figure 8(c) shows representative cancerous and normal nuclei from 20 patients.

3.2 Nuclei Classification Results Using Only Spectral Information

The SVM classification using normalized average transmittance spectra of extracted nuclei
obtained an average accuracy of 0.68, as well as 0.74 sensitivity and 0.54 specificity.

Fig. 8 Nuclei segmentation results. (a) and (b) Nuclei segmentation in normal tissue and cancer-
ous tissue, respectively. The segmentation mask obtained using hyperspectral data aligned well
with RGB images. Nuclei patches extracted from the top and bottom of registered RGB images
were later removed. (c) HSI-synthesized RGB image patches of representative cancerous and
normal nuclei were extracted from each patient.
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Although the spectra-based classification did not reach a very high accuracy, it did show some
distinction ability of the nuclei spectra. Because SCC cells originate from the stratified epi-
thelium, where we obtained our normal nuclei, it is reasonable that the two types of nuclei have
a similar shape in their spectral signatures. In addition, the shape variation, size change, and
staining variation of SCC nuclei as well as the different cell mitosis stages could all introduce
disparities to the spectra among different cancerous nuclei. The spectra-based classification was
only carried out for a straightforward investigation of whether the spectral signatures of nuclei
would change along with cell carcinogenesis. That being said, there were five patients, i.e., #3,
#8, #10, #13, and #18, who got a fairly good accuracy above 0.85. Their spectral signatures of
cancerous nuclei and normal nuclei all showed very obvious differences and were in line with the
trend as previously shown in Fig. 6(c). In addition, two patients, i.e., #9 and #12, got extremely
bad classification results with an accuracy <0.4. In the next section, we compare the patch-based
classification results using the RGB patches (spatial and color information) and hyperspectral
patches (spatial and spectral information) and see if their spectral difference brought a significant
impact on classification.

3.3 Nuclei Classification Using Spatial and Spectral Information

In this section, we compare the classification performance using hyperspectral patches and RGB
patches of the segmented nuclei, as shown in Table 4. For the validation data, the CNN trained
with HSI patches could distinguish SCC nuclei from normal epithelium nuclei with an average
AUC of 0.93, as well as 0.89 accuracy, 0.88 sensitivity, and 0.89 specificity. The RGB patch-
based CNN achieved an average AUC of 0.88 as well as 0.81 accuracy, 0.82 sensitivity, and 0.81
specificity. In half of the validation patients, HSI-CNN outperformed RGB-CNN with an
increased accuracy of 3% to 6%, and in five patients (#3, #7, #8, #11, and #14), HSI significantly
improved the accuracy by >10%. It is worth noting that all five patients got SVM classification
results no worse than the average, especially patients #3 and #8 got 0.88 accuracy. Interestingly,
patients #13 and #18 got high classification accuracy using SVM (0.90), RGB-CNN (0.97 and
0.99), and HSI-CNN (0.98 and 0.99), while patient #9 got the worst performance using all three
methods (0.35, 0.64, and 0.64). The other patient that had a very low SVM accuracy of 0.38 was
#12, who was the only one that got lower accuracy using hyperspectral patches. It can be seen
that spatial and spectral information contributes to the differentiation of SCC nuclei and normal
nuclei. The morphological features of nuclei seem to play a more dominant role, but spectral
signatures do bring a certain impact to the classification performance. Figure 9 shows the average
spectra of cancerous and normal nuclei from four different patients, who (1) got very good clas-
sification results using SVM, RGB-CNN, and HSI-CNN, (2) got good SVM accuracy and sig-
nificantly improved classification performance using HSI-CNN compared to RGB-CNN, (3) had
less distinctive spectral signatures and an average-level SVM accuracy but still, HSI outper-
formed RGB, and (4) had abnormal spectral signatures and a very low SVM accuracy, which
resulted in worse classification results when using spectral information together with spatial
information.

For the four testing patients, HSI has achieved an average performance of 0.89 AUC, 0.82
accuracy, 0.72 sensitivity, and 0.93 specificity. The CNN trained with RGB patches achieved an
average performance of 0.86 AUC, 0.74 accuracy, 0.87 sensitivity, and 0.62 specificity.
Although HSI had a lower average sensitivity than RGB, its overall classification performance
(accuracy) was significantly better. For patient #16, the spectral signatures of cancerous and
normal nuclei were obviously differentiable, and both networks got very good results with a
0.99 AUC. Except patient #16, the classification results for the other three patients using
RGB patches and hyperspectral patches were very different. For patients #4 and #19, most
SCC nuclei did not show as much size change and shape variation as in other slides, hence
the spatial information was insufficient for nuclei differentiation, while using the spectral infor-
mation in the hyperspectral patches compensated for this insufficiency and significantly
improved the results. Therefore, the HSI-CNN achieved an AUC above 0.96 and over 20%
improvement in accuracy in both patients. Patient #20, on the contrary, was negatively impacted
when using the spectral information, which resulted in very low accuracy of 0.63 as well as an
AUC of 0.62. By looking at the average spectra, we found that patients #20 and #12 had the same
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Table 4 Patch-based CNN classification results of 20 patients using
HSI patches and synthesized RGB patches.

Patient # Method Accuracy Sensitivity Specificity

Validation 1 RGB 0.91 0.99 0.81

HSI 0.96 0.99 0.92

2 RGB 0.90 0.98 0.73

HSI 0.93 0.89 0.99

3 RGB 0.51 0.33 0.84

HSI 0.90 0.87 0.95

5 RGB 0.85 0.81 0.93

HSI 0.88 0.83 0.97

6 RGB 0.92 0.95 0.89

HSI 0.95 0.96 0.94

7 RGB 0.79 1 0.72

HSI 0.94 0.99 0.92

8 RGB 0.76 0.71 0.91

HSI 0.87 0.72 1

9 RGB 0.64 0.81 0.49

HSI 0.64 0.56 0.72

10 RGB 0.86 0.93 0.71

HSI 0.89 0.87 0.93

11 RGB 0.60 0.33 0.75

HSI 0.81 0.86 0.78

12 RGB 0.85 0.77 0.99

HSI 0.75 0.89 0.53

13 RGB 0.97 0.96 0.98

HSI 0.98 0.96 0.99

14 RGB 0.75 0.97 0.55

HSI 0.87 0.97 0.77

15 RGB 0.79 0.75 0.85

HSI 0.85 0.81 0.92

17 RGB 0.89 0.90 0.78

HSI 0.95 0.95 0.96

18 RGB 0.99 1 0.98

HSI 0.99 0.98 1
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issue of a reversed spectral trend. The reason that caused this change of spectral signatures was
uncertain. One possible explanation is the color variation, which we will in the future improve
our network to take care of. However, it is worth investigating whether specific pathological
features could possibly result in this change.

3.4 Image-Wise Classification Results

In this study, the goal of distinguishing cancerous and normal nuclei is to facilitate automatic
cancer detection in the histological slides. Therefore, we carried out image-wise classification
based on the percentage of cancerous nuclei detected in the image to locate cancerous tissue. For
each single hyperspectral image, the number of nuclei that were classified as cancerous (NC) and
the total number of segmented nuclei in this image (NTotal) were calculated, and the ratio of the
two numbersNC∕NTotal was used as to identify cancerous regions. Technically, the region should
be counted as cancerous if there’s even one cancerous cell in it. However, considering the false
positives, we tried five different thresholds for the percentage of cancerous nuclei, namely 1%,
5%, 10%, 20%, and 30%, on the validation data. The number of correctly classified images with
each threshold is shown in Table 5. Although using a larger threshold such as 20% could result in
more correctly classified images, it also increases the risk of false negatives. It is worth noting
that most of the misclassified images were from patients #9 and #12, where the classification
performance was generally not very good. As a result, the threshold of 10% was selected and
applied to the 44 testing images from four different patients. All 27 cancerous images as well as
15 normal images were correctly identified, resulting in a total accuracy of 0.95. The two normal
images that were classified as cancerous were both from patient #20. The percentage of detected
cancerous nuclei in these two images was both slightly above 20%. Despite the low sensitivity of
patient #20, all cancerous regions were correctly labeled.

4 Discussions and Conclusions

Machine learning methods, especially deep learning algorithms, have been an emerging tech-
nique in recent years to assist automatic pathological diagnosis to improve the diagnostic speed
and reduce the interpathologist variation. Most previous studies were carried out using a large
RGB image patch size with low magnification to include enough histological features in the
patches.7,8,41–43 Relatively complex network architectures were usually needed to implement
effective classification for those patches.

HSI can capture a subtle spectral difference caused by molecular changes and is able to pro-
vide more information than conventional three-band RGB color information of tissue. It is ben-
eficial for many different microscopic applications, including cancer detection in histological
slides. However, due to the current absence of a public comprehensive hyperspectral histological

Table 4 (Continued).

Patient # Method Accuracy Sensitivity Specificity

Testing 4 RGB 0.59 0.91 0.29

HSI 0.83 0.67 0.95

16 RGB 0.91 0.82 0.98

HSI 0.91 0.81 0.99

19 RGB 0.65 0.99 0.21

HSI 0.89 0.86 0.93

20 RGB 0.82 0.75 0.98

HSI 0.63 0.53 0.83
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image dataset, it might be difficult to fully investigate whole-slide image classification and
cancer detection using HSI. Since the appearance of cancerous nuclei is a critical factor for
networks to make cancer prediction, and there are many nuclei in slides to provide sufficient
training data for a network, we propose to carry out automatic SCC nuclei detection in histo-
logical slides using HSI. In this work, we utilized our custom-made hyperspectral microscopic

Fig. 9 Validation performance and average spectra of cancerous nuclei and normal nuclei from
different patients. (a) Receiver operating curves of eight validation folds with corresponding AUC
values. (b) Average spectra of patient #13, who had good classification accuracy using the spec-
tra-based SVM (0.91), RGB-CNN (0.97), and HSI-CNN (0.98). The spectral of two types of nuclei
are clearly distinctive. (c) Average spectra of patient #8, who got good spectra-based classification
accuracy of 0.88, and significant improvement patch-based classification accuracy using HSI-
CNN (0.87) compared with RGB-CNN (0.76). (d) Average spectra of patient #6, where spec-
tra-based classification had a close-to-average performance, but the spectral information in hyper-
spectral patches still helped improving patch-based classification results. (e) Average spectra of
patient #12, who got an extremely low spectra-based classification accuracy probably due to the
reversed trend of spectral signatures. This is also the only patient who got lower patch-based
classification result using HSI.
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imaging system to image the H&E-stained SCC histological slides for nuclei detection and can-
cerous region localization in the slides. We used the annotations drawn by the pathologist as the
ground truth and carefully selected normal ROIs from the healthy stratified epithelium tissue and
cancerous ROIs from or close to the cancer nests. Hyperspectral images and RGB images that
share the same FOV were acquired simultaneously, and then RGB images were registered to the
corresponding hyperspectral images using affine registration. Synthesized RGB images were
also generated using the hyperspectral data and our customized transformation function to pro-
vide better visualization of the ROIs. To avoid using the extra spectral information of cytoplasm
and other subcellular components, PCA-based nucleus segmentation method was proposed to
extract nuclei from the hyperspectral images. Then, two patch-based 2D-CNNs trained with
hyperspectral and RGB patches, as well as an SVM trained with average normalized transmit-
tance spectra of the extracted nuclei, were implemented for nuclei classification. The classifi-
cation results of SVM and RGB-CNN show that both morphological features and spectral
information contribute to the differentiation of nuclei. HSI-CNN outperformed RGB-CNN in
18 out of 20 patients and provided significant improvement in classification performance in
seven patients (five validation and two testing). This has proved the usefulness of the spectral
information in HSI for cancerous nuclei detection in histological slides. Furthermore, we could
find an overall trend that the spectra of normal nuclei have smaller values than spectra of cancer-
ous nuclei within the wavelength range from 460 to 600 nm and higher values within the range
from 600 to 750 nm. It was also interesting to find that the reversed spectral trend in two patients
had a negative impact on their classification results using HSI-CNN. Although it was not clear
what caused the abnormal change of spectral signatures, it proves that the spectral information in
HSI does play an important role for nuclei differentiation.

Based on the percentage of cancerous nuclei detected in each image, we implemented image-
wise classification for cancerous region identification. The proposed methods for SCC nuclei
detection as well as image-wise classification could be used to localize cancerous tissue in the
slides using a simple CNN architecture. With high magnification, the spatial size of the FOV is
smaller than a required tumor margin. Accurate identification of cancerous nuclei, especially
when there are very few in the image, could effectively avoid false negative. Our method can
be used to assist the diagnosis of some suspicious regions where a whole-slide classification
network fails to give very precise predictions, such as the tumor-normal margin. Our lab is now
actively developing an automated hyperspectral microscopic imaging system as well as hyper-
spectral pansharpening algorithms44 to achieve fast whole-slide scanning. In the future, we
anticipate developing an automated hyperspectral cancer detection method by implementing
hyperspectral whole-slide image classification first and applying our nuclei detection method
to refine the classification results in suspicious regions and tumor margins.

Nevertheless, our work has certain limitations. Because we manually acquired images, and
the dataset was relatively small. Since hyperspectral images intrinsically contain more features
than RGB images, it is possible that a larger training dataset is needed for the CNN to fully
“understand and play with” those cancer-related features. This might be the reason for the lower

Table 5 Image-wise classification results in the validation group
using different thresholds.

Threshold (%)

Number of correctly classified images

Cancerous
(total 111)

Normal
(total 102)

Both
(total 213)

1 111 (100%) 55 (54%) 166 (78%)

5 111 (100%) 79 (77%) 190 (89%)

10 110 (99%) 93 (91%) 203 (95%)

20 109 (98%) 96 (94%) 206 (97%)

30 107 (96%) 97 (95%) 204 (96%)
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average sensitivity of HSI compared to RGB in the testing data group. For the next step, we need
to include more data on SCC nuclei from different patients and organs to better investigate the
usefulness of the rich spectral information in hyperspectral images. With the automatic whole-
slide scanning hyperspectral microscope system that we are developing, we will be able to fur-
ther investigate the proposed method in a larger region, and hopefully combine it with whole
image classification. Another future work for us is to explore which specific wavelength bands or
pathological features in hyperspectral images improved the classification results. Finding out the
most useful bands might allow the use of cameras with less spectral bands, which will help
reduce the image acquisition time and storage space required for hyperspectral image data.
Particularly, we want to quantitatively analyze the spectral signatures and pathological features
of the SCC nuclei and see if there are potentially any features that lie in hyperspectral images but
are not obvious enough to be seen by the human eye. From the experimental results, the nuclei
spectra of most well-classified patients had a general trend that the cancerous nuclei spectra have
higher values in the short wavelength range and then turn lower after around 600 nm. It was also
observed that the reversed spectral trend in patients #12 and #20 did negatively impact the clas-
sification results. However, it was not clear what caused the difference in the spectral signatures
of these two patients, and it is definitely worth exploring. In addition, cancer development
involves many other cellular components and may cause abnormalities of various cells and bio-
molecules such as lymphocytes and collagen.45,46 We will look into these components and inves-
tigate how HSI can facilitate their pathology analysis. Moreover, by combining HSI with other
imaging modalities such as autofluorescence45 and polarized light imaging,47,48 more features
that the human eye cannot directly see in the H&E stained slides, might be revealed.

In conclusion, our hyperspectral microscopic imaging and automatic machine learning
method achieve accurate detection of HNC on histologic slides and can provide a promising
tool for many pathologic applications.
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