
Homogenization of multi-institutional chest x-ray images
in various data transformation schemes

Hyeongseok Kim ,a,† Seoyoung Lee ,b,† Woo Jung Shim,c

Min-Seong Choi,c and Seungryong Choa,b,d,e,*
aKAIST Institute for Artificial Intelligence, Korea Advanced Institute of Science and

Technology, Daejeon, Republic of Korea
bKorea Advanced Institute of Science and Technology, Department of Nuclear and

Quantum Engineering, Daejeon, Republic of Korea
cAI Research Center, Radisen Co., Ltd., Seoul, Republic of Korea

dKAIST Institute for Health Science and Technology, Korea Advanced Institute of Science and
Technology, Daejeon, Republic of Korea

eKAIST Institute for IT Convergence, Korea Advanced Institute of Science and Technology,
Daejeon, Republic of Korea

Abstract

Purpose: Although there are several options for improving the generalizability of learned
models, a data instance-based approach is desirable when stable data acquisition conditions
cannot be guaranteed. Despite the wide use of data transformation methods to reduce data
discrepancies between different data domains, detailed analysis for explaining the performance
of data transformation methods is lacking.

Approach: This study compares several data transformation methods in the tuberculosis detection
task with multi-institutional chest x-ray (CXR) data. Five different data transformations, including
normalization, standardization with and without lung masking, and multi-frequency-based (MFB)
standardization with and without lung masking were implemented. A tuberculosis detection
network was trained using a reference dataset, and the data from six other sites were used for
the network performance comparison. To analyze data harmonization performance, we extracted
radiomic features and calculated the Mahalanobis distance. We visualized the features with
a dimensionality reduction technique. Through similar methods, deep features of the trained
networks were also analyzed to examine the models’ responses to the data from various sites.

Results: From various numerical assessments, the MFB standardization with lung masking pro-
vided the highest network performance for the non-reference datasets. From the radiomic and deep
feature analyses, the features of the multi-site CXRs after MFB with lung masking were found to
be well homogenized to the reference data, whereas the others showed limited performance.

Conclusions: Conventional normalization and standardization showed suboptimal performance
in minimizing feature differences among various sites. Our study emphasizes the strengths
of MFB standardization with lung masking in terms of network performance and feature
homogenization.
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1 Introduction

Learning method estimatations may not generalize well when the joint distribution of inputs and
task labels changes substantially.1–3 A network architecture trained on a given domain data set
may perform poorly when other domain data are tested. There exist a host of research articles
that address this domain discrepancy, and the so-called “domain adaptation” is a subfield of
transfer learning4,5 that addresses this problem. A good summary and review of the domain
adaptation techniques in chest x-ray (CXR) imaging can be found in the paper of Çallı et. al.6

Domain adaptation methods basically seek domain-invariant features or representations
between the source and target domains.7–11 These approaches, however, assume that the source
domain, from which the samples for testing come, can be appropriately formed and specified.
This usually means that enough data from the source domain, specified by a consistent set of
scanning hardware, scanning environment, scanning protocol, etc., can be recruited for domain
adaptation.12–14

The situation in which we have a particular interest is from the global healthcare disparity
perspectives, and it is not supportive for forming such a domain. It is often the case that CXR is
performed without satisfying the scanning protocols in medically underserved areas and pop-
ulations. A lack of enough electric power supply, inadequate data acquisition setting, and
absence of licensed technologists are possible causes of inconsistent image quality of CXRs.
Considering rather unpredictable scanning conditions, the CXR images at hand may not con-
stitute a well-defined domain in such cases. Artificial intelligence (AI)-enabled techniques are
fast evolving in medical fields including automated detection and diagnosis of diseases. They
will surely help reducing global healthcare service disparity. It is considered an important area of
research and development for such tools to be deployed in the field with their optimal perfor-
mance uncompromised. The purpose of this study is to implement and compare instance-based
data transformation methods in that line of research, which is therefore highly relevant to the
special issue of global health, equity, bias, and diversity in AI in medical imaging.

An out-of-distribution detection task that verifies whether a test sample belongs to the
predefined source domain can help check the availability of the trained network.6,15 However,
to increase the utility of the learned models, a single data instance-based approach, such as input
data transformation, is desirable. In this work, we focus on the input transformation approaches
and provide a missing link that can explain which method would be more powerful in deep-
learning-based detection tasks.

Preprocessing methods are commonly used for deep network performance enhancement16

and efficient deep network training.12 To reduce data discrepancies, data transformations in the
scope of histogram modification techniques, including histogram equalization, matching, clip-
ping, and normalization,12,17 have been investigated. Nevertheless, a claim that such global histo-
gram modification methods cannot harmonize texture differences has been made.17 Indeed, data
preprocessing steps embracing the multi-frequency characteristics or local features of x-ray
images have been reported to improve computer-aided detection18–20 and deep-learning-based
detection tasks.17,21,22 However, it is still questionable whether the results of the network in
clinical settings that have different distributions than those used in training can be trusted.23–25

This study compares several data transformation methods in the CXR-based tuberculosis (TB)
detection task and provides strong evidence for why one method is superior to the others through
radiomics analysis and deep feature analysis.

2 Material and Methods

2.1 Data Transformation

We implemented three types of transformation algorithms: data normalization, data standardi-
zation, and multi-frequency-based (MFB) data standardization. For data standardization and
MFB data standardization, we further split each method into two different schemes: with and
without lung masks. Therefore, the total number of methods implemented in this work is five.
Data normalization and standardization use the transformation Eqs. (1) and (2), respectively.
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EQ-TARGET;temp:intralink-;e001;116;574XN;i ¼
Xref
max − Xref

min

Xmax − Xmin

ðXi − XminÞ þ Xref
min; (1)

EQ-TARGET;temp:intralink-;e002;116;526XS;i ¼
σref

σ
ðXi − μÞ þ μref ; (2)

where Xi ∈ R represents a CXR image input pixel value. For an effective normalization of CXR
images coming from different systems, a dynamic normalization with histogram analysis is
desirable.12 Specifically, a DICOM image may contain a constant bias or a letter mark having
outlying pixel values. Although some DICOM images provide information that can be utilized to
confine pixel value ranges, not all DICOM images provide this information, and windowing
parameters are therefore user-specific. In this study, as an attempt to remove such outlying pixels,
we first calculated the cumulative histogram f∶ R → ½0;1� of a given CXR image X ∈ RN . Then,
Xmin and Xmax are such that fðXminÞ ¼ 0.02 and fðXmaxÞ ¼ 0.98. In the following homogeni-
zation processes, we first applied the above normalization and then calculated image statistics to
make images have similar pixel value ranges regardless of the transformation methods. We local-
ized pixels with values that are below Xmin or above Xmax, and those outlier pixels are excluded
from the statistics calculation. μ and σ in Eq. (2) indicate the mean and the standard deviation
values of the input image after this preprocessing, which are then adjusted to the reference mean
μref and standard deviation σref . When standardizing images with lung masks, image statistics
were calculated only within the masked lung region, whereas the transformation was applied to
all of the image pixels.

The MFB data standardization starts with the Laplacian pyramid decomposition,26 which is
widely used in CXR image enhancement.27 The Laplacian pyramid decomposition results in the
multiscale representation of a CXR image, and its reverse reconstruction process reproduces the
original image. Conventional MFB data enhancement techniques strengthen specific frequency
bands of a CXR image, whereas the MFB data standardization aims to make a CXR image
similar to the target domain at each multi-frequency band.18 Figure 1 shows an example
Laplacian pyramid of a CXR image. We specified the Gaussian and the Laplacian pyramid
images at the k’th level by Gk and Lk, respectively. Lower frequency information tends to
be stored at the higher level of the Laplacian pyramid image by design. For MFB standardization
of an input image, we first applied the Laplacian pyramid decomposition to a set of training CXR
images. For each training image, the mean μk and standard deviation σk values of Lk were then
calculated. Finally, the reference mean μrefk and standard deviation σrefk values were calculated by
averaging those μk and σk values. The MFB standardization process iteratively adjust μk and σk
values of an input image to μrefk and σrefk values. As mentioned above, pixels inside the masked
lung regions were used for the statistics calculation when the lung masking scheme was adopted.
The iterative procedures are summarized in Algorithm 1. We set the total number of iterations N
to 50 in this study. We empirically set the maximum level of Laplacian pyramids by 5, which
results in a 16 × 16 array size at the fifth level. The ResNet-1828 can downsample the input image
with an array size of 512 × 512 to 16 × 16, which is equivalent to the minimum array size that is
manageable when level 5 is used in the Laplacian pyramid decomposition.

Fig. 1 Example Laplacian pyramid of a CXR image.
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2.2 Lung Segmentation

To compare the effects on the detection performance of image transformation methods in con-
junction with masked lung statistics, we need a lung segmentation tool. Lung segmentation was
conducted using a separate deep neural network from the network that is used for TB detection.
A network with a Res-UNet structure29 was trained with the JSRT CXR dataset30 and its mask
dataset.31 Additionally, we used the China and Montgomery datasets32 for additional validation.
The training code was implemented using PyTorch libraries33 on a system with a GeForce RTX
3090. We summarize the details of the data set used for lung segmentation in Table 1.

2.3 Data Preparation for TB Detection

We used multi-institutional CXR data from seven clinical sites to train and test the deep neural
network for TB detection. Anonymized datasets were collected from the clinically cooperative
institutions of the Radisen AI Research Center. This study was approved by the institutional
review boards, and informed consent was waived. We summarize dataset information in
Table 2. It should be noted that the reference site data provide the target domain examples and
other sites provide the source domain examples and that the source domains are diverse in terms
of CXR modality, bit-depths, and scanning protocols, of which details are unavailable. The refer-
ence dataset is composed of half normal CXR and half abnormal CXR diagnosed with TB.
For non-reference data, there are class imbalances between TB sample sizes and normal sample
sizes. Because data skewness affects performance metrics,34 we calculated the performance
metrics after under-sampling normal data, so the sample sizes of the two classes become equal.
The under-sampling was randomly performed and repeated, so statistical analyses are feasible.
Meanwhile, we used all of the data for the feature analyses because the class imbalance itself
does not have a signification influence on the feature extraction.

Table 1 Datasets information for lung segmentation network
training.

Site Number of samples

JSRT (training) 197

JSRT (validation) 50

Montgomery (validation) 138

China (validation) 566

Algorithm 1 MFB standardization algorithm

1: Inputs X , μrefk , σrefk , N

2: X 1
M←X

3: for i←1 to N do

4: Decompose Lik from X i
M

5: Calculate μik and σik from Lik

6: L 0
k←ðLik − μik Þ ×

σrefk

σik
þ μrefk

7: Reconstruct X iþ1
M from L 0

k

8: end for

9: Output XNþ1
M

Kim et al.: Homogenization of multi-institutional chest x-ray images in various data transformation schemes

Journal of Medical Imaging 061103-4 Nov∕Dec 2023 • Vol. 10(6)



2.4 TB Detection Network Training

The overall workflow of the CXR-based TB detection in this work is shown in Fig. 2. In the
training phase, lung regions were first identified using the trained lung segmentation network.
After appropriate image cropping, each image was downsized to an array of 512 × 512 using
bilinear interpolation. Various data transformation methods were then applied to each image and
then the lung regions of the processed images were used for the network training. In Fig. 2, we
omitted the image cropping process for the simplicity of presentation. ResNet-18 architecture
was used for the TB detection network. Training details are presented in Appendix A.

2.5 TB Detection Performance Evaluation

In the inference phase, CXR images from seven different sites in Table 2 were tested. For testing
each TB detection network trained by the data that went through a specific data transformation,
the same data transformation method was applied to the input CXR image. For example, we
applied the MFB data standardization with lung masking to the test dataset when we evaluated
the performance of a TB detection network that was trained by the data transformed by the MFB
standardization with lung masking. For the evaluation, receiver operating characteristic (ROC)
and precision-recall (PR) curves were used. We also calculated an F1 score of the reference test
results with 20 different threshold values within [0, 1]. The threshold value that provides the
highest F1 score in the reference test results was applied to other datasets to calculate F1 scores
and recalls. For the reference dataset, we bootstrapped the performance metrics for statistical
analysis. Random bootstrapping was performed up to a thousand times, which was determined
so that the standard deviation from the bootstrapping results stay within 2% of difference from
the Delong’s estimated standard deviation in the area under the curve (AUC) value of ROC

Table 2 Multi-institutional datasets information.

Site Modality Data bits Number of normal samples Number of TB samples

Reference (training) DR 16 956 956

Reference (test) DR 16 250 250

A (test) CR 16 250 77

B (test) CR 14 248 41

C (test) DR 12 244 136

D (test) CR 12 285 40

E (test) CR 12 247 37

F (test) CR 10 297 26

Fig. 2 Diagram of overall procedures for comparison study.
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curves.35,36 For non-reference data (from sites A to F), we randomly repeated the under-sampling
a thousand times, which is the same number of times that bootstrapping was performed.

Localization of suspicious regions in the CXR image was also performed using Grad-
Cam++,37 which can provide the activation map for TB detection. The bounding boxes were
drawn by radiologists for suspicious areas in the entire data set, and we evaluated how well
the obtained saliency maps match the radiologists’ insights. We achieved Grad-Cam++ images
at the deepest feature layer and calculated the weighted intersection over attention (WIOA)
values with respect to the radiologists’ bounding box information. Grad-CAM++ images and
WIOAvalues were produced from the M3d-CAM PyTorch library.38 Details on the procedure for
calculating the WIOA can be found in Appendix B.

2.6 Radiomic Features

To observe the distributions of various datasets, we first extracted the radiomic features39–42 of
CXR images transformed by the aforementioned methods. For each processed CXR image, we
masked out the region outside of the lung. PyRadiomics43 was used to extract features from the
preprocessed lung images. We calculated 93 radiomic features, which can be grouped into 6
different series including: first-order statistics, gray-level co-occurrence matrix (GLCM),
gray-level dependence matrix (GLDM), gray-level run-length matrix, gray-level size zone
matrix, and neighboring gray tone difference matrix. The last five features can be grouped into
second-order statistics. We did not include shape features because the shape of the lung in the
CXR is not the target of data homogenization.

We calculated the Mahalanobis distance44,45 as a numerical assessment of the homogeniza-
tion ability of the radiomic features. The Mahalanobis distance DM is a distance between a point
x and a distribution D with a mean of ~μ and a covariance matrix S and is defined as

EQ-TARGET;temp:intralink-;e003;116;434DMð~xÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð~x − ~μÞTS−1ð~x − ~μÞ

q
: (3)

We calculated the distances between each sample of test sites (A to F) and the distribution of
reference data. The distances of first- and second-order radiomics were calculated separately.

For a better visualization of the features, we performed a principal component analysis (PCA)
of the calculated radiomics. We chose PCA for visualization to compare the effects of data
harmonization on radiomic features in the common coordinate system. Because the radiomic
features of images were extracted in the same way regardless of the dataset and harmonization
methods, such a comparison is legitimate.

2.7 Deep Features

The architecture of a typical convolutional neural network (CNN)46,47 consists of a series of
convolutional layers and pooling layers. We focused on the final layer of the CNN because
it stores all of the essential information extracted from the input image in the form of a feature
vector. In this work, we used the latent feature vector of the final layer of the TB detection
network (Sec. 2.4), which is a vector with a size of 512. We used t-distributed stochastic neighbor
embedding (t-SNE)48 to visualize the latent feature vector. The t-SNE helps with understanding
how the network responds to the test data under various data transformation through visualizing
the feature clusters.

3 Results

3.1 Data Transformation

Figure 3 shows the example network inputs of lung-segmented images processed by different
transformation methods from various sites. N, S, SL, MFB, and MFBL indicate data normali-
zation, data standardization without and with lung masking, MFB data standardization without
and with lung masking, respectively. In Fig. 3, the data N method resulted in non-uniform lung
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region brightness. It is observed that MFB methods generally provide a more similar appearance
overall with the reference compared with the N, S and SL in the same display window setting.
N, S and SL resulted in rather coarse image textures in other site datasets compared with those in
the reference, whereas MFB methods produced finer textures similar to the reference. However,
the MFB without a lung masking scheme provides suboptimal visual texture similarity in some
data, for example, site D in Fig. 3. We included a full breakdown of the time spent on various
preprocessing techniques in Appendix C.

3.2 TB Detection Performance

In Fig. 4, we show the ROC and the PR curves of the network outputs from different data trans-
formation methods. The AUC values of the ROC and the average precision (AP) values of the PR
curves for the reference data showed marginal network performance differences among various
data transformations. Network performances, however, largely varied for the six other site
datasets. The MFBL method resulted in the minimum gap between the reference curve and the
site-average curve in both ROC and PR, whereas S and SL showed poorer results in both AUC
and AP.

Table 3 summarizes the network performance evaluation results over the sites in terms of F1
score, recall, and WIOA. Here, please note that the average values in the table are average scores

Fig. 3 Patches extracted from inputs to TB detection networks with different data transformations.
Images in the same column are displayed with the same display window.
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from sites A to F, and we present the standard deviation of those six scores. In the F1 score result,
the MFBL method showed the highest values for every non-reference site except F. It is noted
that site variation of the scores is minimum in the MFB and MFBL results, which implies more
robustness of the network performance. In the recall score, average recall scores of the N, S, and
SL methods did not exceed 0.5, which means they failed to detect true TB cases at a >50%
chance. Considering that we balanced the classes by undersampling, the chance would be lower
than random calls. The WIOAvalue of a non-trained network specified as random in Table 3 was
around 0.31. The WIOA values of the reference dataset with different networks were around
0.60, and the MFBL methods provided slightly lower values in the non-reference datasets as
well. Figure 5 shows examples of bounding boxes and Grad-CAM++ images. As shown in
Fig. 5(f), a hot spot in the saliency map from the MFBL network goes well with the radiologist’s
bounding box.

Fig. 4 ROC and PR curves with different data transformations. Each line shows the ROC or PR
curve for each site. The area value in the legend means the AUC and AP values for ROC and PR
curves, respectively. Values in square brackets represent the 95% confidence interval. Average
lines were produced by collecting every result from site A to site F.
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3.3 Radiomic Features

For a visual comparison, we calculated the Z-scores of the features and presented a heatmap of
the Z-scores. Figure 6 shows the corresponding heatmap, with each row representing one feature
and each column representing one CXR image. The heatmap is divided into five sections on the
horizontal axis; each section denotes each data transformation method. If Z-scores of a certain

Table 3 Network quantitative evaluation summary.

Ref A B C D E F Average

F1 N 0.80 0.62 0.55 0.17 0.46 0.59 0.21 0.42 ± 0.20

S 0.82 0.62 0.57 0.22 0.14 0.63 0.32 0.45 ± 0.17

SL 0.83 0.45 0.50 0.22 0.10 0.61 0.27 0.36 ± 0.18

MFB 0.83 0.77 0.71 0.51 0.56 0.65 0.56 0.63 ± 0.09

MFBL 0.81 0.78 0.75 0.70 0.75 0.68 0.54 0.72 ± 0.09

Recall N 0.75 0.47 0.39 0.10 0.30 0.49 0.12 0.27 ± 0.17

S 0.77 0.49 0.41 0.13 0.25 0.62 0.19 0.31 ± 0.19

SL 0.78 0.30 0.34 0.13 0.07 0.59 0.15 0.23 ± 0.19

MFB 0.80 0.75 0.66 0.36 0.50 0.62 0.46 0.53 ± 0.14

MFBL 0.77 0.87 0.73 0.62 0.75 0.76 0.46 0.70 ± 0.14

WIOA N 0.61 0.54 0.51 0.35 0.37 0.53 0.41 0.45 ± 0.08

S 0.59 0.49 0.42 0.36 0.35 0.50 0.38 0.42 ± 0.07

SL 0.60 0.45 0.40 0.33 0.33 0.49 0.35 0.39 ± 0.07

MFB 0.59 0.57 0.51 0.39 0.48 0.58 0.48 0.50 ± 0.07

MFBL 0.62 0.61 0.57 0.48 0.52 0.62 0.54 0.56 ± 0.06

*Random 0.39 0.32 0.33 0.24 0.30 0.41 0.28 0.31 ± 0.06

Fig. 5 (a) Bounding box generated by radiologist and example GCam++ images of set D with
different data transformations, (b) N, (c) S, (d) SL, (e) MFB, and (f) MFBL.
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radiomic feature are similar across the samples from different sites, it can be said that the homog-
enization performance of the method is proper in terms of that specific radiomic feature.
The N cannot harmonize data from the multi-site data. S and SL, worked as intended for the
first-order statistics. However, there was a clear discrepancy between reference test data and
other multi-site data in terms of higher-order radiomic features. MFB succeeds in reducing
the discrepancies for various sites both in first- and second-order radiomic features. The use
of lung masks seems to be more effective in terms of harmonization performance. The heatmap
suggests that the MFBL can harmonize not only the histogram characteristic but also textural
features.

Figure 7 is a box-and-whisker plot of Malalanobis distances between the features of test and
reference sites. A larger distance implies that a corresponding feature is not well harmonized,
albeit after a certain data transformation method, and vice versa. The implications of the box
plots of distances are in the same vein as the results shown qualitatively in the heatmap (Fig. 6).

Fig. 6 Heatmap depicting z-scores of 93 radiomic features for various datasets with a conven-
tional N and four different homogenization methods. The vertical axis denotes radiomic features,
divided into first-order statistics and second-order statistics including GLCM, and GLDM. The
horizontal axis denotes samples. Note that the MFBL method showed the best homogenization
results throughout various features.

Fig. 7 Box-and-whisker plots of the Mahalanobis distances between test radiomic features and
the reference radiomic features. (a)–(f) The site A, B, C, D, E, and F. N, S, and SL cannot har-
monize the second-order statistics well, whereas the performance of the MFBL was the best for
all sites.
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The N has a limited performance on feature harmonization overall. S and SL can harmonize only
first-order statistics and not second-order features. MFBL resulted in the shortest feature dis-
tances; implying a superior homogenization performance.

Note that the smaller discrepancy in radiomics feature space does not always guarantee better
performance of the classification network. For example, although the S improved the first-order
feature in all cases compared with N, the performance of the network is generally better for the
normalized images (see Fig. 4). Nevertheless, we confirmed that conventional N and S failed to
harmonize the textural features of the images as compared to the MFB and thus cannot sub-
stantially reduce the effect of reference data bias.

Figure 8 contains visualizations of radiomic features after five different data transformation
processes. There are distinct differences between the radiomic features of the reference site and
other sites that have undergone conventional N and S. However, after MFB, especially with lung
masks [Fig. 8(e)], it is clear that the radiomic features of the samples from different sites are well
harmonized with the reference group.

3.4 Deep Features

Table 4 summarizes a list of the calculated Mahalanobis distances of the multi-site features to the
reference distribution used for the network training. Figure 9 shows the box-and-whisker plots
corresponding to Table 4. The MFBL method shows the closest distance regardless of the test

Fig. 8 Visualizations of radiomic features after data transformation. (a) N, (b) S, (c) SL, (d) MFB,
and (e) MFBL. Visualizations are done by PCA of high-dimensional radiomic feature vectors.

Table 4 Mahalanobis distances (DM ) for multi-site data homogenization. The target distribution
was the reference train dataset. A larger distance indicates an outlier to the target distribution.

A B C D E F

N 13.55 ± 5.458 16.82 ± 6.530 16.86 ± 6.473 15.62 ± 5.640 13.73 ± 6.248 16.77 ± 5.109

S 13.62 ± 6.123 17.86 ± 6.655 17.33 ± 6.526 16.85 ± 5.810 12.80 ± 7.181 18.44 ± 5.157

SL 15.38 ± 5.939 18.37 ± 6.315 18.17 ± 6.666 18.63 ± 5.039 12.83 ± 7.769 19.98 ± 4.810

MFB 13.93 ± 7.837 14.83 ± 8.461 18.20 ± 8.367 15.46 ± 8.028 13.46 ± 7.749 14.67 ± 7.791

MFBL 11.66 ± 7.681 12.54 ± 7.789 13.76 ± 8.294 10.72 ± 6.124 12.54 ± 8.831 12.55 ± 7.010
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data. This implies that the deep feature harmonization ability of the MFBL method is the highest
and other harmonization methods may have failed to match the data distributions. Similar to the
result of radiomic feature analysis, the distance in the deep feature space is not necessarily
inversely correlated to the network classification performance. However, the distance can be
used as a metric to determine the network’s trustworthiness for data having different distributions
from the training data.

The t-SNE visualization results are presented in Fig. 10. After N, S, and SL [Fig. 10(a)–
10(c)], the intrasite differences were reduced, but the homogenization between reference data
and other sites was not successful; multi-site data forms a distinct cluster from the reference.
From radiomic feature analysis (Sec. 3.3), we found that N, S and SL could not reduce data
distribution between reference and other sites. The t-SNE result implies that the network was
not able to handle the reference data bias and finally resulted in a biased model. From the point of
view of the TB detection network learned from the reference dataset, it can be seen that data from
other sites are still treated as out-of-distribution. Although the network may have achieved a
somewhat satisfying performance after N, S or SL (Sec. 3.2), the latent vector analysis does
not provide strong support for such an improvement. Meanwhile, both versions of MFB methods
can harmonize multi-site data in terms of the network’s deep feature, not forming any distinct
cluster [Figs. 10(d) and 10(e)].

Fig. 9 Box-and-whisker plot of the Mahalanobis distance of the deep features. Distances were
calculated between each point in a dataset to the reference distribution.

Fig. 10 t-SNE visualizations of deep-embedded features after conventional N and four different
data transformations. (a) N, (b) S, (c) SL, (d) MFB, and (e) MFBL. Note that, for N and S, the deep
features are not well harmonized.
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4 Discussion

In this study, we used a single dataset from a single clinical site for training and tried to
harmonize other datasets with the reference data exploiting data transformation methods.
Using multi-institutional datasets for training in conjunction with data augmentation is also
a viable option for a network’s generalizability enhancement. This approach can be interpreted
as one that increases the diversity of feature space of the training dataset, hopefully covering the
feature space of a new dataset. Pixel-level transformations, including contrast or brightness
adjustment and spatial-level transformation, such as shift and rotation, were used in an example
work.13 Our study shows the importance of image features at multiscale representations in the
detection network training. Developing data augmentation strategies with image frequency
modulation is planned as our future study.

It is observed that radiomic and deep features from the multi-site dataset after the N, S, or SL
method did not agree well with the features of the reference test data. However, it is shown
repeatedly that the features within the multi-sites become similar to each other after N, S and
SL [see Figs. 8(a)–10(c), Figs. 10(a)–10(c)]. It is perhaps due to the fact that the textures of test
data from A to F are similar in the original images. As shown in Fig. 4, the reference image is
rather sharp and accordingly high-frequency-emphasized, whereas the images of other sites after
N, S and SL are blurrier in a similar fashion.

Deep learning has achieved great success in various image processing tasks, and domain
adaptation is one of the benefited applications. Unsupervised deep-neural-network-based domain
adaption methods aim to transform the data distribution of the source domain to the target
domain.7,10,49 By such a domain transformation, data harmonization between chest radiographs
acquired from various conditions can be achieved. However, there are two shortcomings with such
translation methods, which can be major obstacles, especially in medically underserved regions.

One reason is that deep learning techniques require a considerable amount of data. Recent
studies, motivated by generative models, utilize the generative adversarial networks (GAN)50-
based model to generate domain-matched data from the target to the source.51–54 The perfor-
mance of generative models heavily depends on the number of images for training, and the
data-efficient models still require hundreds of images.55

Another point is that deep neural networks are computationally heavy. The problem remains
for the few-shot learning techniques because the CNNs have a large number of parameters to be
trained. The computational burden of training the network in a new environment inevitably
becomes an obstacle to rapid diagnosis. If the chest x-ray scanner is placed on a mobile system,
it is impractical to mount such a high-performance computing device to the system.

There are alternative versions of GAN such as one- or few-shot domain transfer models that
require smaller datasets to train. Because we are interested in instance-based data harmonization,
we implemented a one-shot GAN learning model.56 A network was trained to align the domain
features of dataset A to the reference data. Lung-masked images were used for training. The
process was accelerated by a single NVIDIA GeForce GTX 1080 Ti graphics processing unit,
and it took two days to train a single one-shot domain translation network. Two distinct networks
were trained on two different samples of dataset A, and generative-model-based domain trans-
lation resulted in significantly varying outcomes, depending on which instance was used for
one-shot training (Please see Fig. 11). However, the transformations in this paper’s scope are
fully instance-based and thus free from such complications.

In this study, we analyzed the data features after various harmonizations. For the quantitative
analysis, we calculated the Mahalanobis distance between the deep features of reference data and
the test data points. The conclusion was that the MFBL, which resulted in the shortest distance, is
the most efficient harmonization. Unfortunately, it was difficult to establish the direct correlation
between the distance in feature space and the degree of harmonization. For example, the average
deep feature distance of N (13.73) is farther than that of S (12.80) in the case of dataset E
(see Table 4), whereas the network performance in terms of AUC and AP was superior for the
N case. Still, there is an overall tendency that the shorter the distance is, the better the network
performance metric becomes. Although further research is needed to determine the criteria for a
reliable and credible model that is less affected by the reference data distribution, our suggested
feature analysis may provide a basis for such discussion.
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We would like to emphasize that this study contributes to understanding the data homog-
enization processes through feature analyses and recommends the MFBL method as the
instance-based data transformation method potentially for the CXR images acquired at
medically underserved areas. As the special issue of global health, equity, bias, and diversity
in AI in medical imaging is pursued, this contribution will help to reduce global healthcare
disparity and diversity.

5 Conclusions

In this work, we implemented various instance-based data transformations to reduce data
discrepancy for the multi-institutional use of a trained deep-learning prediction model. A
CNN-based TB detection network was trained using the reference site data, and the TB detec-
tion performance was tested for the remaining six sites after applying N, S, SL, MFB, and
MFBL. MFBL outperformed other methods in terms of numerical criteria including AUC, AP,
F1 score, and WIOA. For the radiomic feature analysis, we calculated the Mahalanobis dis-
tance and performed dimensionality reduction. We found that S and SL match the histogram-
based features well but fail to match the texture-related second-order statistics. On the other
hand, the textural features of the multi-site CXRs after MFBL were well homogenized to the
reference data. The deep features of the trained network were analyzed through the same
method, and the MFBL showed the best harmonization performance. Conventional N and
S, on the other hand, did not lessen the distribution gap between multi-site datasets and were
accordingly unsuccessful in deep feature harmonization. Our study emphasizes the strengths
of the MFBL, especially its comparative advantage on network performance and ability to
lessen the disparity between various data distributions.

6 Appendix A: TB Detection Network Training Details

We initialized every model corresponding to each data transformation method with the pre-
trained ResNet-18 provided by PyTorch, and the same random seed was used for training.
A dropout layer having a dropout ratio of 0.6 was added before the last linear layer. We used
the same computing resources that were used for the lung segmentation network training, and
training details are summarized in Table 5. The early stopping condition was determined by
monitoring the validation losses with the reference test dataset.

Fig. 11 Comparison of the deep-learning-based one-shot domain translation and the MFBL trans-
formation. Each image corresponds to (a, e) normalized data from dataset A, (b, f) outputs of
a network trained on (a), (c, g) outputs of a network trained on (e), and (d, h) MFBL.
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7 Appendix B: Calculation of WIOA

In Fig. 12, we show the procedure for calculating the WIOA value in an exemplary case.
The Grad-Cam++ image is first segmented by the Otsu method,58 which results in a binarized
attention map ATT. Then, a weighted attention map WATT is generated by multiplying the
Grad-Cam++ image and ATT. The multiplication of the WATTand the bounding boxes provides
the weighted intersection area WINT, and the WIOA value is finally calculated by

EQ-TARGET;temp:intralink-;e004;116;468WIOA ¼
P

x WINT ðxÞP
x WATTðxÞ : (4)

Table 5 TB detection network training details.

Task TB detection

Loss function BCE with logits loss

Optimizer SGD with momentum

Learning scheduler Cosine annealing warm restart57

Maximum learning rate 1e−4

Batch size 128

Number of total epochs 1200

Fig. 12 (a) Example input image to explain WIOA value calculation, (b) the GCam++ image of
the corresponding input image, achieved at the deepest feature layer, (c) the bounding box of
TB regions drawn by a radiologist, (d) the binarized GCam++ image with thresholding, (e) the
weighted attention map, (b) multiplied with (d), (f) the weighted intersection area, and (e) multiplied
with (c). The WIOA value was defined as the summation of the pixel values of (f) divided by
that of (e).
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8 Appendix C: Data Preprocessing Time

Table 6 provides a detailed analysis of the time required for each data-transforming procedure.
It is important to mention that we preprocessed the entire dataset prior to the actual training
and saved the results separately. Through this strategy, we could avoid increasing the training
time. Specifically, the preprocessing of ∼2000 reference data required an additional 4 minutes to
complete.

As is summarized above, in addition to the reference computation time (0.28 s), only a few
100 milliseconds are additionally required for the lung segmentation and MFB. We believe this
increase in computation time would not hamper its use in clinical practices.

9 Appendix D: Learning Curve

In terms of convergence in the training phase, all of the implemented harmonization methods
showed a similar speed of convergence, as shown in Fig. 13. The training phase used 1200
epochs in all cases. Solid lines and dashed lines represent the training phase and the validation
phase, respectively.

Table 6 Data preprocessing time. All measurements were done in
intel Xeon® CPU E3-1270v5/GTX 1080 Ti platform.

Preprocessing Approximate time (s)

Dicom read 0.004

N 0.28

Lung segmentation 0.04

Downsampling processes 0.25

S 0.004

MFB 0.13

Fig. 13 Training and validation loss plots of the networks.
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