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ABSTRACT. Purpose: The Medical Imaging and Data Resource Center (MIDRC) open data
commons was launched to accelerate the development of artificial intelligence
(AI) algorithms to help address the COVID-19 pandemic. The purpose of this study
was to quantify longitudinal representativeness of the demographic characteristics
of the primary MIDRC dataset compared to the United States general population (US
Census) and COVID-19 positive case counts from the Centers for Disease Control
and Prevention (CDC).

Approach: The Jensen-Shannon distance (JSD), a measure of similarity of two
distributions, was used to longitudinally measure the representativeness of the
distribution of (1) all unique patients in the MIDRC data to the 2020 US Census and
(2) all unique COVID-19 positive patients in the MIDRC data to the case counts
reported by the CDC. The distributions were evaluated in the demographic
categories of age at index, sex, race, ethnicity, and the combination of race and
ethnicity.

Results: Representativeness of the MIDRC data by ethnicity and the combination of
race and ethnicity was impacted by the percentage of CDC case counts for which
this was not reported. The distributions by sex and race have retained their level of
representativeness over time.

Conclusion: The representativeness of the open medical imaging datasets in the
curated public data commons at MIDRC has evolved over time as the number of
contributing institutions and overall number of subjects have grown. The use of met-
rics, such as the JSD support measurement of representativeness, is one step
needed for fair and generalizable AI algorithm development.
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1 Introduction
Since the first identification of the SARS-CoV-2 coronavirus (and its associated infectious dis-
ease, COVID-19) in late 2019, there have been reports of differences in disease health outcomes
by race, ethnicity, sex, and other demographics.1–14 Additionally, the relative difference in impact
of COVID-19 to demographic subgroups has also changed over time.15,16 Furthermore,
differences in the utilization of medical imaging in healthcare have been observed in various
demographic subgroups over the course of the pandemic.17–19 As a result, the use of medical
imaging among different demographic subpopulations can be expected to change over time.

The Medical Imaging and Data Resource Center (MIDRC)20 is a multi-institutional initiative
designed to collect, curate, and share medical images and other related resources to support the
development of artificial intelligence/machine learning (AI/ML) for diagnosis, treatment, and
prognosis of COVID-19 and beyond. MIDRC is hosted at the University of Chicago, funded
by the National Institute of Biomedical Imaging and Bioengineering, and co-led by the
American College of Radiology® (ACR), the Radiological Society of North America (RSNA),
and the American Association of Physicists in Medicine (AAPM). Studies are contributed to
MIDRC by institutions via a pipeline that includes a collaborative partnership between the
ACR®, the RSNA, the AAPM and Gen 3, a data commons organization. Users can access the
data under either a non-commercial research or a commercial use agreement.21 MIDRC places a
strong emphasis on monitoring and increasing the representativeness of the data, both at specific
instances in time and longitudinally, to help support the development of unbiased and general-
izable algorithms.

The purpose of this study was to (1) introduce the use of a metric to measure representa-
tiveness of the imaging datasets compared to relevant groups and (2) report on the evolution of
the representativeness since the ingestion of datasets from contributors began in August 2021.

2 Materials and Methods

2.1 Dataset
Data used in this study were composed of metadata for the imaging studies available at the
MIDRC open data commons22 in the open-A1 and open-R1 datasets (i.e., those ingested by the
ACR® and RSNA and curated and harmonized by AAPM and Gen3). In this study, we refer to
this specific collection as “MIDRC data.” The metadata had been submitted by data contributors
in accordance with the MIDRC data dictionary.23 Assignment of unique patients into the open
data commons occurs at the ingestion of data within MIDRC according to a multidimensional
stratified sampling algorithm,24 with ∼80% of unique patients assigned to the open data
commons and 20% of unique patients assigned to a sequestered data commons. The sequestra-
tion algorithm is designed and tested for balance among groupings including but not limited to
demographic categories.

For the purposes of this study, demographic categories were analyzed as follows: age at
index event (i.e., the first occurrence in MIDRC, usually the first COVID-19 test), sex, race,
ethnicity, and the combination of race and ethnicity. The latter was used in accordance with
guidance from the Office of Management and Budget, which identifies patients as Hispanic
or, if non-Hispanic, by their race.25 Patients may have multiple imaging studies in MIDRC but,
for each unique patient, the characteristics at the index event were used in this study.

2.2 Comparison Groups
The demographic distributions of unique patients in the MIDRC data were compared against two
relevant population distributions. Because at the time of this study all open-A1 and open-R1 data
contributing to the MIDRC data described here had been collected in the United States, we com-
pared the demographic distributions (1) between all cases (unique patients) within the MIDRC
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data and population in the United States 2020 Census26 and (2) between COVID-19 positive
cases within the MIDRC data and population in the COVID-19 case surveillance public use
data from the Centers for Disease Control and Prevention (CDC).27

2.3 Statistical Analysis
The Jensen-Shannon distance28–30 (JSD) was used as a metric to measure the difference between
any two population categorical distributions, with the two comparison groups being termed S and
T in this study. It is based upon the Jensen-Shannon divergence31 (called DJS in this study) and
the Kullback-Leiber divergence DKL. The DKL is defined for two distributions as

EQ-TARGET;temp:intralink-;e001;117;628DKLðSkTÞ ¼
X

x

SðxÞlog2
SðxÞ
TðxÞ ; (1)

where SðxÞ and TðxÞ are the distribution functions of any two populations S and T, and x is the
variable of interest which in this study is any of the demographic variables under investigation.
Because all the demographic variables x in this study are discrete, the distribution functions a
probability mass functions (i.e., represented by the fraction of patients at each bin of x).
Subsequently, the JSD is defined as

EQ-TARGET;temp:intralink-;e002;117;529JSD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DJSðSkTÞ

p
; (2)

where

EQ-TARGET;temp:intralink-;e003;117;492DJSðSkTÞ ¼
1

2
DKLðSkMÞ þ 1

2
DKLðTkMÞ ; (3)

and

EQ-TARGET;temp:intralink-;e004;117;446M ¼ 1

2
ðSþ TÞ: (4)

The logarithm within DKL can be determined through other bases (such as the natural log-
arithm). When log2 is used, theDJS and JSD are bounded between 0 and 1, which is advantageous
for our purpose. The sum in equation (1) was taken over each bin x for which both comparison
groups were non-zero. A JSD of zero indicates that there is no difference between compared
distributions, while a JSD of 1 indicates that there is no similarity between them. In this study,
more representative distributions (compared to the reference distribution) will have a lower JSD.

In this study, the JSD was used to compare the following distributions at each MIDRC batch
ingestion date:

1. cumulative counts of all unique patients in the MIDRC data to the US Census
counts (JSDMIDRC ðallÞ to census),

2. the cumulative counts of all unique COVID-19 positive cases in the MIDRC data to the
cumulative COVID-19 positive counts (derived from case counts) reported by the CDC
(JSDMIDRC ðC19þÞ to CDC ðC19þÞ), and

3. the cumulative COVID-19 positive counts reported by the CDC to the US Census
counts (JSDCDC ðC19þÞ to census).

The CDC to US Census comparison was used as a reference against which the comparison
of MIDRC distributions can be considered.

Additionally, the temporal difference in the JSD was determined between the JSD when
comparing all cases in MIDRC to the US Census and the JSD when comparing all COVID-
19 positive cases to the COVID-19 positive case counts from the CDC. If this difference is pos-
itive, the distribution of COVID-19 positive unique patients in MIDRC to the CDC cumulative
COVID-19 case counts is more representative than the distribution of all unique patients in
MIDRC to the US general population. If this difference is negative, the distribution of all unique
patients in MIDRC to the US general population is more representative than the distribution of
COVID-19 positive unique patients in MIDRC to the CDC cumulative case counts.

Note that in this study, no measures of statistical difference were assessed, since the goal of
the measure of representativeness here is to measure degree of similarity according to counts.
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Additionally, no sampling of distributions was conducted, due to the nature of the data (counts of
individuals), none of which are inherently considered samples in this study.

3 Results

3.1 Dataset
As of April 3, 2023 (the most recent batch ingestion date at time of manuscript preparation), there
were 9 unique contributing sites and over 55,000 unique patients represented in the MIDRC
data (Fig. 1).

The proportions of the MIDRC data by demographic category and COVID-19 status as of
April 3, 2023 are given in Fig. 2.

The most recent distributions of unique patients within each demographic category, both
within the MIDRC data and the comparison groups, are given in Fig. 3 along with JSD results.
Longitudinal measurements of the demographic data for the MIDRC data are available in the
Supplementary Material.

The JSD measured changes in the similarity of the MIDRC data (both when considering all
imaging studies and those from COVID-19 positive patients only) to their comparison groups
(the United States general population and case counts from the CDC, respectively) (Figs. 4–8).
The comparison of age at index to the United States general population and the cumulative case
counts as recorded by the CDC has remained relatively stable in these sets of patients over time,
with little difference in their level of representativeness (Fig. 4).

The comparison of MIDRC unique patients by sex to the United States general population
and the cumulative case counts as recorded by the CDC has demonstrated more representative-
ness (i.e., more similarity) in the distribution of all unique patients to the United States general
population (lower JSD) than the comparison of MIDRC positive patients to the cumulative case
count from the CDC (higher JSD) (Fig. 5). Over time, there has been a slight increase in the
difference of the comparisons as the proportion of male unique patients has increased.

The representativeness of MIDRC unique patients by race to the United States general pop-
ulation and the cumulative case counts as recorded by the CDC reached almost equal similarity
within the MIDRC data in August 2022 (Fig. 6). However, it is important to note that the meas-
urement of representativeness for all three comparisons is impacted by the proportion of subjects
for which race is not reported, which is over 30% in the most recent CDC cumulative case counts
and around 10% in the most recent distributions within the MIDRC data. The MIDRC data also
have substantially higher proportions of unique patients with reported race as Black than the US
general population and the CDC cumulative case counts.

The comparison of MIDRC unique patients by ethnicity to the United States general pop-
ulation has been substantially more similar than the comparison of MIDRC COVID-19 positive
patients to the cumulative CDC case counts (Fig. 7). This is likely a result of the substantial
percentage of cases within the CDC data for which ethnicity is not available (over 40%).

Fig. 1 Cumulative number of unique patients and number of unique contributing sites in the open
MIDRC data commons since the launch of the data commons in August 2021 through time of
manuscript preparation.
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The comparison of MIDRC unique patients by the combination of race and ethnicity to the
United States general population has been more similar than the comparison of MIDRC COVID-
19 positive patients to the cumulative CDC case counts (Fig. 8). This may also be impacted by
the substantial percentage of cases within the CDC data for which race and ethnicity is not
available.

4 Discussion
The representativeness of the MIDRC data continues to change over time as the number of
contributing institutions and the overall number of unique patients grow. The evolution of the
impact of the COVID-19 pandemic to various demographic groups also continues to change
over time, as shown by the changes in JSDCDC ðC19þÞ to census (not discussed in detail here). Using
the JSD contributes to quantifying the comprehensive representativeness of the data and sup-
ports several initiatives related to health-related research and development at the federal level,
including the strategic plan of the National Institute on Minority Health and Health Disparities32

(specifically, Goal 7: “ensure appropriate representation of minority and other health disparity

Fig. 2 Pie charts of the percentages of unique patients in the MIDRC data as of April 3, 2023 by
demographic category and COVID-19 status. The presentation of demographic data in pie chart
form here is the same as the bar graph representation for “MIDRC (all)” (blue bars) in each sub-
figure of Fig. 3.
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Fig. 3 Distributions of cases within the MIDRC data as of March 24, 2023 (the latest ingestion
date that can be compared to CDC data) and comparison groups (US general population from
the 2020 census and cumulative case counts from the CDC). In these figures, the JSD is shown
for (1) all cases in the MIDRC data compared to the US general population (JSDMIDRC ðallÞ to census),
(2) cumulative CDC COVID-19 positive case counts compared to the US general population
(JSDCDC ðC19þÞ to census), and (3) MIDRC COVID-19 positive case counts compared to the CDC

Whitney et al.: Longitudinal assessment of demographic representativeness. . .

Journal of Medical Imaging 061105-6 Nov∕Dec 2023 • Vol. 10(6)



populations in NIH-funded research”) and action plans and guidance from the Food and Drug
Administration.33–35

The goal of the development of fair and generalizable AI/ML algorithms in medical imaging
has rightfully been the topic of much attention.36–43 Goals of algorithmic fairness and general-
izability involve those of equal outcomes (including equalized outcomes) and of equal
performance.44 It should be noted that defining the representativeness of data is a crucial part
of developing and deploying algorithms with fairness and generalizability in mind. Indeed, defin-
ing representativeness is one of many careful procedures needed in AI/ML, with others including
but not limited to definition of the purpose of data collection, aim of the model, and careful
identification of the task. As has been noted by others,45 representativeness can involve repre-
sentativity of data in the sense of coverage of the “input space” (i.e., the training and/or the test
data) and/or representativeness to population distributions. The use of the JSD generally can
support the assessment of representativeness of distributions for either aim; in this study, we
used the JSD to measure representativeness of the MIDRC data to demographic distributions.

Assessment of representativeness of data by demographic categories is but one part of ensur-
ing fairness and generalizability at various stages of AI/ML pipelines. These include data col-
lection (by identifying protected groups and their representation and addressing unequal
representation in data through intentional collection efforts), model tuning and evaluation (such
as comparing deployment data with training data across subgroups), and performance monitoring
(including monitoring for data shifts, such as changes of impact in disease to subgroups over
time44,46). Population characterization (and potentially matching synthetically47,48), cross-
population modeling,49,50 and class balancing51 can be useful in AI/ML algorithm development
to identify and avoid model bias.

Fig. 3 (Continued) COVID-19 positive case counts (JSDMIDRC ðC19þÞ to CDC ðC19þÞ). The JSD is
bounded between 0 and 1, where 0 indicates that two distributions are the same as measured
by the JSD and 1 indicates that they are completely different. MIDRC, The Medical Imaging and
Data Resource Center; US, United States; CDC, Centers for Disease Control and Prevention; and
C19þ, cases positive for COVID-19. (a) Age at index; (b) sex; (c) race; (d) ethnicity; (e) race and
ethnicity.

Fig. 4 The Jensen-Shannon distance (JSD) over time for age at index for (blue data markers) all
unique patients, (gold data markers) all unique COVID-19 positive patients in the MIDRC data, and
(white data markers) the JSD for comparing the CDC data to the US general population (for refer-
ence). The difference in JSD over time between all unique patients and all unique COVID-19 pos-
itive patients in the MIDRC data is also shown (black line). The similarity of both all unique patients
and all unique COVID-19 positive patients in the MIDRC data has remained fairly constant to their
respective comparison groups over time in terms of JSD. MIDRC, The Medical Imaging and Data
Resource Center; US, United States; CDC, Centers for Disease Control and Prevention; and
C19þ, cases positive for COVID-19.
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Fig. 5 The Jensen-Shannon distance (JSD) over time for sex for (blue data markers) all unique
patients, (gold data markers) all unique COVID-19 positive patients in the MIDRC data, and (white
data markers) the JSD for comparing the CDC data to the US general population (for reference).
The difference in JSD over time between all unique patients and all unique COVID-19 positive
patients in the MIDRC data is also shown (black line). The distribution of all unique cases in the
MIDRC data has been more representative of the US population than the distribution of all unique
COVID-19 cases to the CDC cumulative case counts, and this higher representativeness has
slightly increased as the number of unique cases has increased. MIDRC, The Medical
Imaging and Data Resource Center; US, United States; CDC, Centers for Disease Control and
Prevention; and C19þ, cases positive for COVID-19.

Fig. 6 The Jensen-Shannon distance (JSD) over time for race for (blue data markers) all unique
patients, (gold data markers) all unique COVID-19 positive patients in the MIDRC data, and (white
data markers) the JSD for comparing the CDC data to the US general population (for reference).
The difference in JSD over time between all unique patients and all unique COVID-19 positive
patients in the MIDRC data is also shown (black line). The distribution of unique patients in the
MIDRC data has recently reached similar levels of representativeness to their comparison groups
(difference in JSD approaching zero). MIDRC, The Medical Imaging and Data Resource Center;
US, United States; CDC, Centers for Disease Control and Prevention; and C19þ, cases positive
for COVID-19.
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Fig. 7 The Jensen-Shannon distance (JSD) over time for ethnicity for (blue data markers) all
unique patients, (gold data markers) all unique COVID-19 positive patients in the MIDRC data,
and (white data markers) the JSD for comparing the CDC data to the US general population (for
reference). The difference in JSD over time between all unique patients and all unique COVID-19
positive patients in the MIDRC data is also shown (black line). The distribution comparisons are
substantially similar for all unique patients in MIDRC to the United States general population than
all unique COVID-19 positive patients to the case count distributions from the Centers for Disease
Control and Prevention (CDC) due to the high percentage of cases within the CDC data for which
ethnicity is not available (over 40%). MIDRC, TheMedical Imaging and Data Resource Center; US,
United States; CDC, Centers for Disease Control and Prevention; and C19þ, cases positive for
COVID-19.

Fig. 8 The Jensen-Shannon distance (JSD) over time for race and ethnicity for (blue data markers)
all unique patients, (gold data markers) all unique COVID-19 positive patients in the MIDRC data,
and (white data markers) the JSD for comparing the CDC data to the US general population (for
reference). The difference in JSD over time between all unique patients and all unique COVID-19
positive patients in the MIDRC data is also shown (black line). The lower representativeness
(higher JSD) of all unique COVID-19 positive patients in the MIDRC data to the CDC data and
the CDC data to the US general population is impacted by the substantial percentage of cases
within the data from the Centers for Disease Control and Prevention for which race and ethnicity is
not reported (over 40%). MIDRC, The Medical Imaging and Data Resource Center; US, United
States; CDC, Centers for Disease Control and Prevention; and C19þ, cases positive for
COVID-19.
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We believe the Jensen-Shannon distance to be useful in AI/ML investigations in medical
imaging, in part due to its intuitive nature (especially in terms of its bounds) and its relationship to
information theory, which is an important foundation to other AI/ML performance measures such
as receiver operating characteristic analysis.52 Jensen-Shannon measures have also been used in
some biology studies.53 There are other methods for comparing the distributions of populations,
such as the Hellinger distance,54 population matching discrepancy,55 and matching quantiles
estimation.56 The ratio of patient identity to disease prevalence, termed the participant to preva-
lence ratio (PPR),57 is used in some clinical trials (in which subjects are termed “participants”) to
measure representation within demographic subgroups. A measure such as the JSD is desirable
for our definition of representativeness due to its ability to summarize across a demographic
category, but measures such as the PPR would be complementary for analysis of individual sub-
groups. It would be advantageous for future studies to quantify the impact of ranges of PPR on
adequate representation or lack thereof and to establish more specific criteria for such levels. On
the whole, it will be useful to conduct a comprehensive comparison of different measures of
representativeness (both across an entire demographic category and by subgroups) and their rela-
tionship to fairness of AI in medical imaging; this will be the topic of future work.

The work described here uses COVID-19 positive case counts collected by the CDC before
the declared end of the COVID-19 public health emergency, on May 11, 2023. After this date,
COVID-19 data reporting by the CDC will change, impacting the reporting of case counts.58 We
will continue to monitor the representativeness of the MIDRC open data commons as batch
ingestion continues, using hospitalization rates59 as a comparison group for COVID-19 positive
cases.

There were some limitations to this study. First, the demographic categories described here
were limited to one combination of demographic categories (race and ethnicity). Other combi-
nations of demographic categories are important to consider (such as that of age and race or sex
and race) and will be the topic of future study. Second, this study did not include other factors
which may be relevant in studying health inequities, such as patient residence (e.g., urban versus
rural), healthcare institution type (e.g., community versus academic), patient education level
attainment, patient income or experienced income equities, and patient employment status.
Third, there were some limitations in the data reported by the CDC: (1) it includes both probable
and lab-confirmed COVID-19 cases, while COVID-19 positive cases in the MIDRC data
commons include lab confirmation; (2) it includes non-unique case counts (i.e., the counts
include some individuals who have tested positive for COVID-19 at different times) while the
MIDRC data counts patients only once; and (3) it includes substantial proportions of data for
which race and ethnicity are not reported. We are currently conducting related studies on the
impact to AI/ML algorithm development and performance evaluation when representativeness
is impacted by sizable proportions of missing data. While the purpose of this work is to report on
the representativeness of the MIDRC open data commons prima facie, we also note the limi-
tations of measures when using CDC data, including its missing data. In the future, we will
investigate using methods the CDC is currently proposing to address missing data, such as
assuming individuals with no reported ethnicity are non-Hispanic.60 Finally, MIDRC works with
data contributors to receive imaging study donations that have been de-identified using the Safe
Harbor method, in compliance with the Health Insurance Portability and Accountability Act of
1996 privacy rule. Thus, while each patient’s timeline is preserved, the MIDRC data commons
does not provide the actual date of image acquisition and COVID test. This means that the im-
aging studies within a given ingestion date can include imaging studies acquired theoretically at
any time before the ingestion date, necessitating our comparison of cumulative case counts in
both the MIDRC data and the COVID-19 case counts from the CDC, rather than a potential
comparison for cases imaged within a given month to cases reported by the CDC within a given
month.

In summary, the demographic characteristics of the MIDRC data in the categories of age at
imaging, sex, race, ethnicity, and the combination of race and ethnicity and their similarity to
comparison groups were measured using the Jensen-Shannon distance. Overall, the JSD indi-
cated more representativeness for all unique patients than for COVID-19 positive patients when
compared to their respective comparison groups. These measures can be used by investigators in
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developing unbiased and generalizable AI/ML algorithms using the MIDRC data, including
when building cohorts.
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