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Abstract. This study introduces a practical approach to implement real-time signal processing
algorithms for general surveillance radar based on NVIDIA graphical processing units (GPUs).
The pulse compression algorithms are implemented using compute unified device architecture
(CUDA) libraries such as CUDA basic linear algebra subroutines and CUDA fast Fourier trans-
form library, which are adopted from open source libraries and optimized for the NVIDIAGPUs.
For more advanced, adaptive processing algorithms such as adaptive pulse compression,
customized kernel optimization is needed and investigated. A statistical optimization approach
is developed for this purpose without needing much knowledge of the physical configurations of
the kernels. It was found that the kernel optimization approach can significantly improve the
performance. Benchmark performance is compared with the CPU performance in terms of
processing accelerations. The proposed implementation framework can be used in various
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1 Introduction

There are many existing applications of graphic processing unit (GPU)-based radar processing
implementations, such as synthetic aperture radar processing1,2 and constant false alarm rate
processing.3,4 Many of the applications show the potential of acceleration using GPUs collabo-
rating with CPUs,5,6 such as one thousand times acceleration of image formation over using
CPUs alone.7 The performance of actual processing implementations has variations, and a
well-organized approach to achieve optimal performance for surveillance radar processing
has not been available.

The purpose of this study is initial implementation of a type of advanced high-level surveil-
lance radar algorithms, called adaptive pulse compression (APC)8–10 in a GPU environment.
APC algorithms are based on existing pulsed compression (PC) algorithms in solid-state radar
and offer reduced sidelobes and enhanced resolution. As such, they are important for downward-
looking high-altitude airborne and space radars.11 There are multiple versions of APC algo-
rithms, including reiterative minimum-mean-square error (RMMSE)8 and RMMSE based on
matched filter (MF-RMMSE) output.10 Implementation of APC algorithms in real time will
allow for fast remote sensing image formation for weather observation.12 The challenge of
this implementation with parallel computing has been the reiterative nature of APC algorithms,
as well as the latencies and memory constraints for matrix inversions. The new generation of
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GPU devices, on the other hand, provides an opportunity for breaking through some of these
limitations. The assumed radar system parameters are summarized in Table 1.

As there has been no prior report of implementing APC algorithms using GPUs, this study
provides the first performance benchmark and application to actually measured radar remote
sensing data. Similar to other adaptive algorithms, the APC algorithm is based on the “basic”
algorithms such as fast Fourier transform (FFT), matrix multiplication, and matrix inversion.
Since the focus is investigating how the “basic” algorithms can be integrated optimally for sur-
veillance radar processing, and how they impact on the overall performance of the radar process-
ing chain, we use the most popular compute unified device architecture (CUDA) libraries in
these implementations and do not seek to optimize the “basic” algorithms themselves in
GPU. For example, we mainly use standard CUDA toolkit (Version 8.0) and global memory
space allocations for the implementation. Utilizing these libraries may not be the most efficient
approach for a particular device or algorithm, but it maximizes the reusability of the implemen-
tations on different platforms, especially for future upgrades.

Meanwhile, optimization of different “basic” algorithms using different advanced techniques
is explored and some results are presented. The focus of this work is optimizing the key param-
eters in kernel configurations using different GPU devices and optimizing the trade-off between
processor capability and data communication overheads.

2 Algorithms

This study focuses on three algorithms in the “pulse compression” category in Fig. 1. They are
basic MF, RMMSE filter, and MF-RMMSE. These algorithms are key to the APC algorithm
family and important to the resolutions and sidelobe levels of radar range processing.

2.1 Matched Filter

The benchmark test procedure for basic matched filtering is as follows: first, simulated ground
truth, waveform, and returned signal are generated. Here, an LKP3 phase-coded waveform is

Table 1 Assumed surveillance radar system parameters.

Waveform LFM and phased coding

Scanning mode Plan position indicator (PPI) scanning

# of azimuth (range profiles) Varies in tests

# of range gates 128 to 8192

# of pulses per azimuth Varies in tests

Target types Weather and point targets

-

Fig. 1 The basic processing chain of pulsed-Doppler radar.
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used as the simulated surveillance radar waveform. Second, zero padding is applied to the wave-
form as well as the returned signal, to reach the nearest length l ¼ 2a3b5c7d, where a; b; c, and d
are integers, in order to achieve the optimal FFT performance.13 Third, an MF is applied to the
signals as described in Eqs. (1)–(5), with different implementations of FFT/inverse FFT (iFFT)
and multiplication. Since the first two steps are common to all the implementations of the MF,
time latencies are only measured from the third step

EQ-TARGET;temp:intralink-;e001;116;663wrðnÞ ¼ wð−nÞ; (1)

EQ-TARGET;temp:intralink-;e002;116;631WðNÞ ¼ FFT½wrðnÞ�; (2)

EQ-TARGET;temp:intralink-;e003;116;603SðNÞ ¼ FFT½sðnÞ�; (3)

EQ-TARGET;temp:intralink-;e004;116;575MðNÞ ¼ WðNÞ × SðNÞ; (4)

EQ-TARGET;temp:intralink-;e005;116;547mðnÞ ¼ iFFT½MðNÞ�; (5)

where w, s, and m represent the waveform, returned signal, and MF output, respectively.
Subscript r means a reversed version of the respective data. Lower case letters represent data
in time domain (before Fourier transform), whereas upper case letters represent data in frequency
domain (after Fourier transform). FFT½·� and iFFT½·� represent FFT and iFFT computation.
The pseudocode of MF is provided in Algorithm 1.

2.2 RMMSE

RMMSE is one of the APC algorithms based on the MMSE approach.8 It performs significantly
well in terms of recovering the truth data from the measurement. However, this outstanding

Algorithm 1 Matched filter.

1 function MF ðs;wf Þ

Input: Two vectors of complex numbers s and wf .

// s and wf represent the returned signal and waveform, respectively

Output: One vector of complex numbers mf .

// mf represents the match filter output

2 if lengthðsÞ! ¼ lengthðwf Þ then

3 zero padding the shorter vector to make lengthðxÞ ¼¼ lengthðwf Þ

4 end

5 wf ¼ reverseðwf :conjðÞÞ; // reverse and conjugate wf

6 s ¼ circRightShiftðs;1Þ; // do a circular right shift on s

7 w̄ f ¼ fftðwf Þ

8 s̄ ¼ fftðsÞ

9 m̄f ¼ s̄ × w̄ f ; // the multiplication is element-wise

10 mf ¼ ifftðm̄f Þ

11 return mf

// the red part of algorithm could be implemented with EIGEN(CPU) or CUDA(GPU)
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performance comes with a price, which is a high computation load. The extremely high com-
putation load limits the application of this algorithm, making it improbable to be applied on the
massive size of data from various high definition and/or rapid updating observation tasks. The
pseudocode of RMMSE is provided in Algorithm 2.

2.3 MF-RMMSE

MF-RMMSE is a modified version of RMMSE based on MF output which is proposed and
derived in Ref. 10. It successfully reduces the computational load by the processing of MF out-
puts. The computation complexities of MF, RMMSE, and MF-RMMSE are listed in Table 2. The
pseudocode of MF-RMMSE is provided in Algorithm 3.

Algorithm 2 RMMSE.

1 function RMMSE ðs; wf ; numiterÞ

Input: Two vectors of complex numbers s and wf .

// s and wf represent the returned signal and waveform, respectively

// numiter represents the number of iterations in RMMSE

Output: One vector of complex numbers.

2 Do zero-padding at the head of s; // ŝ ¼ ½0: : :0 s�

3 Initialize noise matrix R; // R is a diagonal matrix with the values of diagonal elements equal
to noise power

4 initialize vector ρ; // ρ is a vector of ones

5 for idxiter ¼ 1 to numiter do

6 numcell ¼ ð2 × numiter − idxiter − 1Þ × ½lengthðwf Þ − 1� þ lengthðsÞ

7 for idxcell ¼ 1 to numcell do

8 Initialize matrix C

9 for idxin cell ¼ 1 to numin cell do

10 Update matrix C with zero padded shifted wf

11 end

12 CR ¼ C þ R

13 ŵ ¼ CR \ wf ; // solving linear equations

14 ŵ ¼ ŵ × ρ½idxcell þ lengthðwf Þ − 1�

15 outputtemp ¼ ŵ ⊺ŝ½subvector�

// subvector starts at idxcell þ ðidxiter − 1Þ � ½lengthðwf Þ − 1� with length of wf

16 end

17 ρ ¼ joutputtempj2; // element-wise operation

18 end

19 return outputtemp

// the red part of algorithm could be implemented with EIGEN(CPU) or CUDA(GPU)
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3 GPU Testbed

In this section, the hardware and software environments of the GPU testbed will be described.

3.1 Hardware

The GPUs used in this study are TITAN Z and TITAN Xp, whose specifications are described in
Table 3. In this study, only one of the two GK110 GPU cores of TITAN Z is used. Therefore, the

Algorithm 3 MF-RMMSE.

1 function MF_RMMSE ðs;mf ;numiterÞ

Input: Two vectors of complex numbers s and mf .

// s and wf represent the returned signal and matched filter output, respectively

// numiter represents the number of iterations in MF-RMMSE

Output: One vector of complex numbers.

2 ρ = getMatrixRho();

3 U = getMatrixU(s);

4 G = getMatrixG(s);

5 Sn = getMatrixSn(s);

6 for idxiter ¼ 1 to numiter do

7 for idxl ¼ 1 to length(mf ) do

8 G2 = updateMatrixG(S, G, limwindow)

// limwindow is the size of processing window

9 D = getMatrixD(ρ; Sn;U)

10 ŵ ¼ ρ · D \ G2; // solving linear equation

11 outputtemp½idxl � ¼ ŵ⊺mf ; // vector multiplication

12 end

13 ρ ¼ joutputtempj2; // element-wise operation

14 end

15 return outputtemp

// the red part of algorithm could be implemented with EIGEN(CPU) or CUDA(GPU)

// definitions about functions of getMatrixs are referred to the original article
about MF-RMMSE10

Table 2 Computational complexity per range cell for different algorithms.

Algorithms Computation cost Comments

MF OðNÞ where N is the length of waveform

RMMSE OðN3Þ

MF-RMMSE OðKN þ K 3Þ where K is the length of filter used, and K ≪ N
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TITAN Z used in this study will have the effective computation resource equivalent to TITAN
BLACK, whose specification is also listed in Table 3. As a comparison, AMD FX 8150 is used
as the reference CPU for this study and the CPU implementations utilize FFTW14 and EIGEN15

as counterpart libraries of CUDA.

3.2 Software

For the software environment configuration, Windows 10 is used as the operation system,
NVIDIA driver version 382.05 and CUDA toolkit 8.0 [including CUDA fast Fourier transform
(cuFFT) and CUDA basic linear algebra subroutines] are used as GPU computing support,
MSVC++ 14.0 (Visual Studio 2015) and NVIDIA CUDA compiler (NVCC) 8.0 are used
for compiling and linking C++ and CUDA C code, Eigen 3.3.3 is used as fundamental linear
algebra library for CPU-based counterpart, and fastest Fourier transform in the West (FFTW)
3.3.5 is used as CPU-based FFT backend libraries for comparison.

4 Implementation and Optimization

Because both radar PPI scan and CUDA architecture have a hierarchy of three levels, it is rea-
sonable to directly map those three layers as a guideline to distribute the computation resources.
The initial mapping scheme is described in Fig. 2. However, after further investigations of par-
ticular algorithms, more realistic and efficient computation resources distribution schemes are
discovered. In this section, the implementation and optimization schemes for particular algo-
rithms will be discussed.

4.1 Matched Filter

The computation of MF only involves FFT and element-wise multiplication, thus it is feasible to
take advantage of CUDA FFT library and THRUST to perform the computation without building
customized CUDA kernels. The GPU version of MF algorithm follows the structure shown in
Fig. 3. In this way, the impact of different kernel configurations on performance is less signifi-
cant. As will be mentioned later in Sec. 5, different configurations of the kernel, i.e., THREADS

Table 3 The GPUs we used in the current studies.

Model TITAN Z TITAN BLACK TITAN Xp

Code name 2 ×GK110 GK110 GP102

Die size (mm2) 2 × 561 561 471

Fab (nm) 28 28 16

Compute capability 3.5 3.5 6.1

Microarchitecture Kepler Kepler Pascal

CUDA core configa 2 × 2880∶240∶48 2880∶240∶48 3840∶240∶96

Memory size (MB) 2 × 6144 6144 12,288

Memory bandwidthb 2 × 336 336 547.7

GFLOPSc 8121.6 5120.6 12,150

Release date March 2014 February 2014 April 2017

TDP (Watts) 375 250 250

aUnified shader processors:texture mapping units:render output units.
bGigabyte per second.
cSingle precision.
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PER BLOCK and BLOCKS PER GRID, will have a significant impact on the performance of
the GPU version of other APC algorithms.

4.2 RMMSE and MF-RMMSE

RMMSE and MF-RMMSE are adaptive, iterative, and more complicated algorithms, and it
would be better to utilize a divide-and-conquer technique, deploy the ability of nested

Fig. 3 The configuration of processing power for MF.

Fig. 2 The hierarchy of CUDA abstract architecture and related radar PPI scan.
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parallelism of CUDA, and explore intrinsic parallelism of such algorithms, while it is applied on
a small amount of data for each individual process. In addition, the high-level computation
scheme of RMMSE and MF-RMMSE is depicted in Fig. 4. In this scheme, it is inevitable
to manually configure the computing resource on the GPU. So, the key to reach the best accel-
eration performance is to optimally adjust the processing parameters with respect to specific data
size. This will be further discussed in Sec. 5.3.

4.3 Data Transfer

One major issue of various GPGPU implementations is the bottleneck of data transfer between
CPU (or host memory) to GPU (or device memory).16 It would not be a fair performance com-
parison between CPU and GPU unless the cost of the data transfer has been treated appropriately.
Because optimizing data transfer is beyond the scope of this work, the cost of data transfer is
excluded from the GPU performance measurements in this paper, unless otherwise stated. A
discussion of the overhead of data transfer will be given with a real-world application in Sec. 6.

4.4 Memory Space Usage

Shared memory is a type of memory in GPU which is faster but also smaller than global
memory.13 Utilizing shared memory on GPU would be beneficial in terms of processing
speed in some applications.17,18 However, because of the size restriction of shared memory,
it is not feasible to utilize such memory in APC algorithms implementations. As described
in Secs. 2.2 and 2.3, RMMSE and MF-RMMSE consist of several computations between fairly
large size matrices and the smallest object of such algorithms is a large matrix, which could not
be completely restored in the size restricted shared memory. Therefore, it would not benefit from
utilizing shared memory without heavily altering the definitions and structures of these
algorithms.

4.5 Statistical Kernel Optimization

One key factor, which has a critical impact on performance, is the configuration of CUDA kernel
parameters. As shown in Fig. 5, there are three layers of both the CUDA abstract architecture and
the GPU physical architecture.16 The parameters BLOCKS PER GRID and THREADS PER
BLOCK are user definable but the ratio between the GPU, streaming multiprocessors

Fig. 4 The configuration of processing power for RMMSE/MF-RMMSE.
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(SMs), and streaming processors is fixed for a specific GPU device. In addition, the choice of
BLOCKS PER GRID and THREADS PER BLOCK to get optimal performance depends on the
type of algorithm to be implemented and the type of GPU to be used. There is another “layer”
between the thread and grid existing for CUDA architecture called warp. A warp consists of 32
fixed threads and it is the basic operation group for SM to execute.19 However, since the warp is
not configurable by users, the layer of warp is omitted for seeking the optimal configuration in
this research.

For our research, a statistical sampling and searching method is first used to determine the
optimal configuration of CUDA kernel parameters for each algorithm implementation scenario
(with variations in the size of data), based on testing several combinations of parameters in a
given range for each scenario. Time latencies, aka the performance, for each set of parameters
chosen on every individual scenario were recorded. Next, we ran the CPU counterpart of the
algorithm on respective scenarios and recorded time latencies. Finally, we computed the GPU/
CPU time latency ratios for each set of parameters on every individual scenario. By running
statistically large samples of the parameter combinations, we will have a “performance map”
for selecting the optimal kernel configuration. This technique will be illustrated in Figs. 10
and 13 for RMMSE and MF-RMMSE algorithms, respectively.

5 Benchmark Results

In this section, the APC algorithms’ implementations described in Sec. 4 will be tested.
Benchmark results of various data configurations and CUDA settings for each algorithm
will be provided.

5.1 Matched Filter

According to the results shown in Fig. 6, the GPU implementation based on cuFFT is 5 to 30
times faster than the CPU implementation based on FFTW, as long as the dataset is sufficiently
large. The performances of TITAN Z and TITAN Xp are nearly the same as that of TITAN Xp,
holding a slight edge over TITAN Z.

Figure 7 shows us another view on the performance comparison of the MF. Comparing the
performances of TITAN Xp and TITAN Z in Fig. 7, although TITAN Xp performs better than
TITAN Z overall, trends of the amount of acceleration achieved with regard to the number and
length of range profiles are the same for both of the GPUs used.

The white dashed line in Fig. 7 represents the equal performance between CPU and GPU
platforms. It shows that a speed up of 30 times is achievable in several configurations of source
profiles, as it could be seen that the acceleration curve is not quite smooth. The main reason for
this phenomenon is that the cuFFT library is optimized when the length of processing time series
is l ¼ 2a3b5c7d, where a; b; c, and d are integers, and in addition, the smaller the prime factor is,

: :

Fig. 5 The hierarchy of CUDA abstract architecture and related GPU physical architecture.
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the better the performance would be.13 Thus, along with the axis of the number of profiles, the
acceleration performance of the GPU versus CPU monotonically increases. However, along with
the axis of length of the profiles, the acceleration performance reaches its peak when the length
of the profile is close to 2a. It is obvious that the larger the size of the data, the larger acceleration
ratio can be obtained. However, the size of on-board memory limits further acceleration. When
the memory size limit is reached, multiple data transfers are required to circumvent such a limit,
and the data transferring process could be the bottleneck of such an implementation. However,
the cost of data transfer can be compensated by utilizing another CUDA stream, and a more
sophisticated computing scheme, by overlapping the computing and data transfer stream.
Further acceleration would be expected and it will be exploited in future experiments.

5.2 RMMSE

The performance comparison of RMMSE implementations based on GPU and CPU platforms is
demonstrated in Fig. 8. The results indicate that the length of the waveform (which is a trans-
mitted pulse) has a larger impact on processing time compared with the length of ground truth
(which is the impulse response of the range profile), which is implied in the description of its
computation complexity listed in Table 2, and the GPU-based platform performs better when the
length of either parameter mentioned above is larger, as it can be seen that 10 times acceleration
is expected when the data size is sufficiently large.

Figure 9 shows another view on the performance comparison of RMMSE implementations.
The white dashed line in Fig. 9 represents the equal performance between the CPU and GPU
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Fig. 7 The performance comparison of MF based on GPU and CPU platforms. (a) TITAN Xp and
(b) TITAN Z.
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Fig. 6 The performance of MF computing based on various libraries and processor usage.
(a) Time latency used versus number of pulses, while length of data is fixed to 5162 sample points.
(b) Time latency used versus length of range profile, while number of pulses is fixed to 1259.
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platforms. It shows that 12 times speed up is achievable in several configurations of range
profiles.

As mentioned in Secs. 4.1 and 4.5, the configuration of CUDA computing resources, i.e.,
THREADS PER BLOCK and BLOCKS PER GRID, has a major impact on the performance of
the GPU version of algorithms. Plus, for more sophisticated algorithms, such as RMMSE and
MF-RMMSE, utilizing a customized kernel is necessary to perform matrix-wise and element-
wise manipulation as introduced in Secs. 2.2 and 2.3. Thus, properly distributing the GPU com-
puting resources according to the problem data size is the key to achieve the optimum perfor-
mance of the GPU implementations of these algorithms.

Figure 10 shows the impacts of different configurations of GPU computing resources on the
acceleration performance of RMMSE algorithm implementations. The black circles in each fig-
ure represent the largest achievable speed up of the GPU compared with the CPU counterpart in
specific lengths of waveforms, whereas the length of the ground truth is fixed at 100 sample
points for all the cases, since it has less impact on the processing time as discussed earlier.

It can be seen from Fig. 10 that there exists an optimized computing resource configuration
for each specific data size. For the application of RMMSE investigated in this study, we can
conclude that the best configurations of CUDA are 4 or 8 for THREADS PER BLOCK and
16 or 32 for BLOCKS PER GRID for different lengths of waveforms.

As for the performance of different generations of GPU platforms, comparing results in
Figs. 8–10, TITAN Xp (Pascal) consistently outperforms TITAN Z (Kepler) in this test. In gen-
eral, TITAN Xp runs twice as fast as TITAN Z regardless of the size of the dataset.
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Fig. 9 The performance comparison of RMMSE based on GPU and CPU platforms. (a) TITAN Xp
and (b) TITAN Z.
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5.3 MF-RMMSE

The performance comparison of MF-RMMSE implementations based on GPU and CPU plat-
forms is demonstrated in Fig. 11. As can be seen, the acceleration is not as significant as the
implementation of RMMSE, which is shown in Fig. 8. As described in Sec. 2.3, one reason for
this phenomenon is the wayMF-RMMSE is designed, which is different from that of RMMSE.10

It utilizes a processing window that is much smaller than the length of the waveform, and it
effectively reduces the impact of the length of the waveform on processing time. In addition,
as mentioned in Sec. 5.2 and implied in Table 2, the advantage on performance of a GPU over a
CPU is more significant when the length of the waveform is large. Thus, GPU implementations
may be less beneficial for MF-RMMSE than the original RMMSE. However, similar to the
observation of the performance result of RMMSE, GPU implementation of the MF-RMMSE
algorithm performs better when the length of the waveform grows longer.

Figure 12 shows another view on the performance comparison of MF-RMMSE. The white
dashed line in Fig. 12 represents the equal performance between the CPU and GPU implemen-
tations. It shows that a 2.5 times speed up is achievable in several configurations of the source
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Fig. 10 The performance comparison of RMMSE between GPU and CPU implementations with
various CUDA configurations and length of waveforms when length of ground truth is fixed to 100
sample points. Lengths of waveforms are from 32 to 51. The black circle represents the configu-
ration when maximum speed up is achieved under current data format. (a)–(c) TITAN Xp, len_wf =
32, 40, 51 and (d)–(f) TITAN Z, len_wf = 32, 40, 51.
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Fig. 11 The performance comparison of MF-RMMSE based on GPU and CPU platforms. Length
of (a) waveform = 51 and (b) ground truth = 100.
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profiles. Although the MF-RMMSE algorithm utilizes MF outputs,10 the computation cost of an
MF is negligible compared to MF-RMMSE. Thus, compared with Fig. 7, the acceleration curve
in Fig. 12 is much smoother.

Similar to Fig. 10, Fig. 13 summarizes the impacts of the GPU kernel resources on the accel-
eration performance of MF-RMMSE implementations. The black circles in each figure represent
the largest achievable speed up of the GPU compared with the CPU counterpart having specific
lengths of waveforms, whereas the length of the ground truth is fixed at 100 sample points for all
the cases, since it has less impact on the processing time as discussed earlier.

It can be seen from Fig. 13 that an optimized computing resource configuration may be
achieved for each specific data size. For the application of MF-RMMSE investigated in this
study, we can conclude that the best configurations of CUDA are 4 for THREADS PER
BLOCK and 64 or 128 for BLOCKS PER GRID for different lengths of waveforms. The
trend is similar to what could be found in the testing results of RMMSE in Sec. 5.2.

As for the performance of different generations of GPU platforms, comparing results in
Figs. 11–13, TITAN Xp (Pascal) consistently outperforms TITAN Z (Kepler) in this test.
For general comparison, algorithms implemented on TITAN Xp execute twice as fast as
TITAN Z regardless of the sizes of the datasets.
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Fig. 12 The performance comparison of MF-RMMSE based on GPU and CPU platforms.
(a) TITAN Xp and (b) TITAN Z.
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Fig. 13 The performance comparison of MF-RMMSE between GPU and CPU implementations
with various CUDA configurations and length of waveforms when length of ground truth is fixed to
100 sample points. Lengths of waveforms are from 40 to 64. The black circle represents the con-
figuration when maximum speed up is achieved under current data format. (a)–(c) TITAN Xp,
len_wf = 40, 51, 64 and (d)–(f) TITAN Z, len_wf = 40, 51, 64.
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6 Application to Real/Measured Data

MF is implemented on NASA’s HIWRAP radar measurement data10 with both the CPU-based
method (EIGEN) and GPU-based method (CUDA). From the MF outputs depicted in Fig. 14,
the two results are almost identical except for those positions (range points from 400 to 570) with
low-signal power levels. Figure 15 shows averaged MF outputs of EIGEN and CUDA among
10,000 range profiles, respectively. From these two figures, it is clearer that the only noticeable
difference between EIGEN and CUDA results is located within the low-signal return region.
Figure 16 shows the absolute and relative errors of CUDA output compared with EIGEN output.
The errors are calculated in linear scale not dB. Although there is no way to determine whether
the EIGEN or CUDA output is more “correct,” the two outputs are similar to each other, thus
they are able to validate each other. From Fig. 16(a), it could be observed that the errors are
consistent in the same level. However, Fig. 16(b) shows that the errors are more noticeable
when the signal-to-noise ratio is lower. Magnitude-square coherence between CUDA and
EIGEN outputs is also demonstrated in Fig. 17. From the coherence results in those figures,
it can be concluded that the results from CUDA and EIGEN outputs are identical.

For the computation time evaluation, since the MF is a relatively simple algorithm, it is
expected that the data transferring process between the CPU and GPU would be the bottleneck
for such an application as the result demonstrated in Fig. 18. In this experiment, to fully utilize
the parallel computing ability of the GPU, data transfer from host (CPU) memory to device
(GPU) memory is done by a burst of all the data included (to be specific, copy all data

Fig. 14 Output results of pulse compression implementation using NASA’s HIWRAP radar data.
MF output of (a) EIGEN and (b) CUDA.
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Fig. 15 Averaged output results of pulse compression implementation using NASA’s HIWRAP
radar data. Averaged MF output of (a) EIGEN and (b) CUDA.
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Fig. 16 Error results of pulse compression implementation using NASA’s HIWRAP radar data.
(a) Absolute linear error performance and (b) relative linear error performance.
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from “THRUST host vector” to “THRUST device vector” in one command). It could be
observed that, taking account of the overhead of data transfer between the CPU and GPU,
the time consumption of the GPU-based approach is nearly comparable to the CPU-based
approach. However, if the time of the GPU computing part is recorded separately from the
data transferring part, the “true” GPU time consumption is far less than the CPU counterpart.
To implement this evaluation specifically for the GPU computing part, a timer based on CUDA
events is used around the GPU computing part as recommended by an official document from
NVIDIA.16 In this experiment, where only MF is implemented, the time consumption of the
CPU-based approach is as much as 3466 times larger than the “true” GPU-based approach com-
puting time consumption. Here, in this experience, AMD FX-8150 and NVIDIA TITAN Z are
used as CPU and GPU devices, respectively.

7 Summary and Conclusions

In this study, we explored the feasibility of GPGPU-based implementation of advanced pulse
compression algorithms, which is a key element and usually a bottleneck of an end-to-end radar
data processing chain. For APC, GPGPU-based solutions show great potentials of accelerating
such resource-demanding algorithms without introducing additional processing error. During the
investigation of the accelerating ability of the GPGPU, a correlation is discovered between the
computing resource distribution on GPU hardware and acceleration performance compared with
CPU-based platforms under different sizes and structures of data being handled. For future refer-
ence, an optimal way is proposed to allocate resource on GPUs for better performance based on
empirical data. In addition, as a major obstacle of various GPGPU implementations, the over-
head of the data transfer between CPU (host) and GPU (device) might be enormous for some
data heavy applications. One instance of such data-intensive applications is analyzed, and the
result indicates that a more sophisticated and efficient memory management scheme is required
to unleash the parallel computing capability of GPU in such applications. As the GPGPU plat-
form is also available in an embedded system, for future experiments, the revised APC algo-
rithms could be also implemented on a system-on-chip (SoC) platform “Tegra X2 (Parker),”
which is a lightweight computing solution distributed by NVIDIA with its peak computation
power at over 1500 GFLOPS per unit. In addition, the thermal design power (TDP) of this
SoC is just 15 watts and it is able to be expanded to clusters for more computing power
and to meet the low space, weight, and power requirement of many applications. Compared
with the TITAN Xp we used in our experiment, which comes with 12150 GFLOPS, X2 provides
1/8 of the computation power of its desktop counterpart. While comparing with another popular
approach for pulse compression which is a DSP-focused, high-performance, embedded comput-
ing platform,20 the potential computation ability of the GPGPU approach [1500 GFLOPS-Tegra
X2 (Parker)] is significantly higher than it of the DSP approach (160 GFLOPS-TI C6678).
However, with fewer overheads, the DSP-based approach could be more efficiently used
than the GPGPU counterpart, which might mitigate the performance gap between GPGPU
and DSP (1500 GFLOPS versus 160 GFLOPS). Nevertheless, the ease of transforming existing
codes into GPGPU enabled codes, compared with DSP approach which requires heavy modi-
fication of existing CPU-based codes, would still make the GPGPU a better high-performance
solution for existing algorithms.
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