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Abstract. Deep learning method has been extensively applied to ground penetrating radar two-
dimensional profile (GPR B-SCAN) hyperbola detection recently. We propose a B-SCAN image
feature extraction method based on the constraints of the GPR physical model, and further detect
the weak boundary feature curve of the target in the local space. A deep convolutional neural
network (DCNN) is first designed to extract high-level semantic features from B-SCAN images
to remove direct wave. Next, a multiscale feature fusion DCNN is used to extract the features of
the B-SCAN image with the direct wave removed, and the classifier network is used to identify
the hyperbola of the upper boundary feature of the target. Finally, according to the hyperbola, the
local space corresponding to the target in the B-SCAN image is determined. On this basis, the
amplitude and phase information of the scattered electric field are used to segment the lower
boundary characteristic curve of the target through convolution operation. Experimental results
on simulation and field data show that feature information of the buried target in the GPR
B-SCAN image can be efficiently extracted when the proposed method is adopted. © The
Authors. Published by SPIE under a Creative Commons Attribution 4.0 International License.
Distribution or reproduction of this work in whole or in part requires full attribution of the original
publication, including its DOI. [DOI: 10.1117/1.JRS.16.018503]

Keywords: deep learning; ground penetrating radar; underground target detection; convolu-
tional neural network; local space.

Paper 210600 received Sep. 13, 2021; accepted for publication Dec. 23, 2021; published online
Jan. 17, 2022.

1 Introduction

A popular method for nondestructive detection of underground targets is the remote sensing
techniques. One of the most successful modalities for remote sensing of underground targets
is the ground-penetrating radar (GPR), and it has been extensively used in many fields, such
as military,1,2 civil engineering,3,4 and geological survey.5 GPR emits electromagnetic wave
toward the ground, due to the different relative permittivity of the underground medium, the
electromagnetic wave will be reflected back. When GPR antenna moves across the buried target,
the time of arrival for responses from the target constitutes a hyperbola in the B-SCAN image.
Therefore, the buried target detection can be viewed as mapping from the object space to an
image space. Then, according to the characteristic curve of the target, the geometric parameters
such as buried depth, width and height can be calculated.

In recent years, the main methodologies used to detect hyperbola in GPR B-SCAN images
include curve fitting,6 machine learning,7 and deep learning.8 Hough transform technique9 is
used successfully for deformed objects fitting, but the discretization of a large number of param-
eters would lead to greater computational complexity. Hough transform and least-squares (LS)-
based hyperbolic asymptotes fitting algorithms were proposed to improve the computational
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efficiency.10,11 However, the interaction between multiple hyperbolas in B-SCAN profiles will
greatly reduce the accuracy of LS curve fitting results, and it is limited in practical application.
Machine learning methodologies,12,13 which use machine vision technology to extract image
attributes and classify them, have been used in underground target detection. Two methods were
most commonly applied in buried threat detection, i.e., Viola–Jones algorithm14 and image fea-
ture descriptor algorithm.15,16 For these works, feature descriptors need to be designed by manual
operation with experience, and the detection accuracy is not satisfactory.17,18 Recently, deep con-
volutional neural network (DCNN) algorithm has achieved impressive performance for image seg-
mentation and recognition tasks on optical and medical images,19–21 and the use of the DCNN for
the identification of hyperbolic curves in B-SCAN profiles has been increasingly frequent.22–24

Due to the complexity of the geological environment, the structural features of B-SCAN images
are usually complex, which also makes the application of CNN in GPR face some challenges. For
example, there is a lack of data sets for training network models and automatically extracting the
characteristic curve of the target accurately. To address the scarcity of GPR training data, Lei et al.25

enhanced the training data set through rotation, gray-scale transformation, and scale transforma-
tion. Zhang et al.26 and Wang et al.27 used generative adversarial networks (GAN) model-based
strategies to generate more realistic GPR images. In addition, to improve the accuracy of hyper-
bolic detection, the researchers studied the recombination of classic feature extraction and clas-
sification networks. Zhang et al.28 proposed DCNN and incremental random sampling method, in
which Resnet50 network was used to extract features, and YOLOV2 network was used for feature
recognition, to detect moisture damages in asphalt pavements. Ozkaya et al.29 adopt residual CNN
+ Bi-LSTM model to improve classification accuracy of GPR type, scanning frequency, and soil
type. However, these methods are data-driven and do not use the physical mechanism of GPR
work, and the accuracy of the results largely depends on the size of the sample data set used for
training the network model. In this work, we have proposed a method based on the combination of
data- and model-driven. On the one hand, the physical mechanism of GPR is used as a constraint to
design a feature extraction network to obtain the salient feature hyperbola of the target in the
B-SCAN image; on the other hand, the CycleGAN30 is used to enhance data for the training
of the CNN model. Further, on the basis of extracting the salient characteristic hyperbola of the
target, it is proposed to detect the weak useful information (the lower boundary characteristic curve
under the upper boundary characteristic curve of the target) in the local space.

In general, this article adopts a method based on the combination of data and GPR physical
model to detect and identify the characteristic information of B-SCAN images, and discusses in
detail the following three aspects: (1) The characteristics of the target scattering electric field in
the GPR echo data; (2) the scarcity of GPR training data; (3) effective extraction of target fea-
tures, especially the extraction of weak feature information. The main contributions could be
summarized as follows.

1. We propose a B-SCAN image feature extraction CNN model based on the GPR physical
mechanism, which can automatically identify the feature hyperbola with high
performance.

2. We propose an effective method to detect weak characteristic curves of targets in the
local space to obtain more complete spatial geometric parameters of targets.

3. GAN is used to generate realistic GPR B-SCAN images and realize data augmentation. It
could be better used for GPR target detection in field scenario.

The remaining part of this paper is organized as follows. Section 2 presents the GPR target
detection model. In Sec. 3, we propose CNN-based schemes to detect the features of B-SCAN
images, and GPR data augmentation method. In Sec. 4, the experimental results are shown and
discussed in Sec. 5. Finally, conclusions are drawn in Sec. 6.

2 GPR Target Detection Model

GPR detects subsurface structure by emitting electromagnetic wave pulse signals into the
ground, there are reflection, refraction, and other electromagnetic physical phenomena at the
interfaces of different mediums. The reflected wave is received by the GPR receiving antenna,
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and the refracted wave enters the next layer of media. According to the Snell’s law, the reflection
coefficient γ and transmission coefficient T at a dielectric boundary are given by

EQ-TARGET;temp:intralink-;e001;116;711γ ¼
ffiffiffiffiffi
ε1

p − ffiffiffiffiffi
ε2

p
ffiffiffiffiffi
ε1

p þ ffiffiffiffiffi
ε2

p ; (1)

EQ-TARGET;temp:intralink-;e002;116;654T ¼ 2
ffiffiffiffiffi
ε1

p
ffiffiffiffiffi
ε1

p þ ffiffiffiffiffi
ε2

p ¼ 1þ γ; (2)

where ε1 and ε2 are the dielectric constant of medium 1 and medium 2, respectively. According
to Eq. (1), at a dielectric boundary, the greater the difference between ε1 and ε2 is, the greater the
reflection intensity is. In addition, the attenuation of electromagnetic waves in lossy medium also
should be considered, the attenuation coefficient ηi in the i’th layer medium is expressed by

EQ-TARGET;temp:intralink-;e003;116;581ηi ¼ e
−jwkdic

ffiffiffiffiffiffiffiffiffiffi
εi−j

σi
wk

p
; (3)

where wk is the k’th frequency component of an electromagnetic pulse signal, di is the depth of
the i’th medium, c is the traveling velocity of electromagnetic wave in free space, εi and σi are
the dielectric permittivity and electric conductivity of the i’th layer medium, respectively. In
Eq. (3), it can be seen that the attenuation coefficient ηi is affected by the important factors
of the medium, including electrical characteristic parameters ðε; σÞ. In general, the stronger the
reflection of the target at the interface of the background medium, the larger the amplitude of the
target characteristic hyperbola in the B-SCAN image. Figure 1 shows a GPR B-SCAN image
(the direct wave has been removed), including a single rectangular shaped aquifer target, which
is simulated by GPRMAX toolbox.31

In Fig. 1, CU and CL are the upper and lower boundary characteristic curve of the target,
respectively. D is the buried depth,WU andWL are the width of the target, H is the higher of the
target.D can be calculated according to the vertex position of CU,H can be calculated according
to the vertex position of CL and CU,WU andWL can also be calculated according to the effective
widths of curves CU and CL, respectively, which are shown as follows:

EQ-TARGET;temp:intralink-;e004;116;377D ¼ c · tD
2

ffiffiffiffi
εr

p ; H ¼ c · tH
2

ffiffiffiffiffi
εT

p ; WU ¼ Δd · ΔwU; WL ¼ Δd · ΔwL; (4)

where tD is the two-way travel time between the ground and vertex of curve CU, tH is the two-
way travel time between the vertices of curves CU and CL, εr and εT are the dielectric constant of
subsurface background medium and target, respectively,Δd is the distance between two adjacent

Fig. 1 Sample GPR data from GPRMAX simulation software.
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traces (the parameter of the radar system is set according to the actual detection requirement),
ΔwU and ΔwL are the effective widths of CU and CL, respectively.

The intensity of CL is weak compared with the characteristic curve of CU. To improve the
accuracy of the detection results of CL, the lower boundary characteristic curve of the target is
extracted based on the amplitude parameter information of the scattering field combined with the
phase parameters in this paper. When the electromagnetic wave is reflected, the phase informa-
tion changes in the location of the medium boundary in the scattering field. The spherical electro-
magnetic wave propagating is considered in subsurface medium, which can be expressed as

EQ-TARGET;temp:intralink-;e005;116;640E ¼ A0

ejkr

r
ejω0t; (5)

where A0 is the initial radiation intensity, k is the wavenumber of the background medium, r is
the distance between the measurement probe and the source probe, and ω0 is the center fre-
quency of the emitted electromagnetic wave. The reflected electromagnetic wave at the interface
of the medium can be expressed as

EQ-TARGET;temp:intralink-;e006;116;549E 0 ¼ A0

ejkðr1þr2Þ

r1 þ r2
ejω0tγδðt − t1Þ; (6)

where δðt − t1Þ is Dirac distribution. According to Eq. (6), it can be seen that an additional phase
argðγδðt − t1ÞÞ is superimposed, which is mainly determined by the difference value of dielectric
constant of media at the interface, and the inverted phase information in the echo signal shows
that the scattering electric field at the interface of mediums will form a reverse peak curve.
Furthermore, the local region CL in the B-SCAN image can be determined by the prior infor-
mation, where the lower boundary curve CL of the target is below the upper boundary curve CU

in spatial position. When the phase inversion occurs at the lower boundary surface of the target,
using the reverse peak curve of the scattering electric field, i.e., the maximum amplitude infor-
mation in the local space, which is beneficial to determine the weak characteristic curveCL of the
target. More details are analyzed in Sec. 4.4.

According to the above analysis of the physical mechanism of GPR, the proposed CNN
feature extraction network based on GPR physical model constraints is well suited for the
GPR subsurface targets detection for the following reasons:

1. In the process of GPR target detection, affected by electromagnetic scattering, interfer-
ence, and other factors, there will be various interference information similar in shape to
the hyperbola of the target feature in the obtained B-SCAN image. Therefore, there is
a problem of low accuracy when using CNN directly to detect the hyperbola in the
B-SCAN image.

2. In general, there is an obvious difference between the relative permittivity of the target and
the underground background media, which is manifested by the large amplitude of the
target’s characteristic hyperbola in B-SCAN images. It can be seen that the semantic fea-
ture detection results of B-SCAN image based on CNN will mainly contain the salient
feature information of the target, while classifier network can be used to identify the salient
hyperbola of the target and interference with large amplitude in the semantic feature map.

3 Deep Learning Network Architecture for GPR B-SCAN Image
Processing

The acquired GPR echo data usually contain various clutters. As the transmitting and receiving
antennas of GPR work synchronously, the amplitude of the generated direct coupled waves far
outweigh that of the target. Moreover, there are attenuation and diffraction phenomena combined
with the complex geological environment factors when electromagnetic wave penetrates a lossy
medium. These issues pose a challenge to detect the underground targets. To address these
issues, we detect underground targets on the basis of building a deep learning network model
through the data-driven and GPR physic-based methods.
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The flowchart of the data processing is shown in Fig. 2, which could be divided into three
steps. The DCNN is first designed to extract the high-level semantic feature information through
convolution and pooling operations to process the direct wave interference with high intensity in
GPR echo data, on this basis, the regional location of the direct wave in B-SCAN image is
determined and removed. Then, the B-SCAN image is input into the multilayer feature fusion
DCNN to extract the feature map that contains more complete target information, hereafter out-
putting the feature map to the output layer. Finally, training the classification network based on
the obtained feature maps; thus, the geometric parameters of the target can be further calculated
using the extracted feature curves of the subsurface targets.

Additionally, in the process of training the classifier network, the CycleGAN is used for
generating realistic B-SCAN images to achieve data augmentation in processing GPR field data
due to the lack of real data for training. In this paper, we use the classification network based on
Faster R-CNN,32 the network structure and its application in GPR B-SCAN hyperbolic image
detection can be referred to Ref. 27. Next, we will introduce the B-SCAN image feature extrac-
tion network and data augmentation network, respectively.

3.1 GPR B-SCAN Image Feature Extraction Network

The process of extracting B-SCAN image features through convolution operation based on CNN
can be calculated as

EQ-TARGET;temp:intralink-;e007;116;176

8>>><
>>>:

F target ¼ fΣ
h
F ðLÞ

s ðs ¼ 1; 2; 3; : : : ; SÞjI !L F ðLÞ
S

i

F ðlÞ ¼ Iw×h×M � Ck;N;D

F ðlþ1Þ ¼ poolingðF ðlÞÞ
; (7)

where F target is the feature map extracted by CNN, fΣ½·� means feature fusion, !L represents the

convolution and pooling feature mapping through L times, F ðLÞ
S represents S feature maps

Fig. 2 GPR data processing flowchart based on deep learning.
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obtained after L times of mapping.F ðlÞ is the feature map output by the l’th layer of CNN, “*” is
the convolutional operation, I is the input image, and w, h, and M are the width, height, and
number of channels of the input image, respectively. As the B-SCAN image corresponding to
GPR echo data is single channel, the channel number M ¼ 1. C is the convolution kernel in the
convolution layer, k, N, and D are the size, number, and channel of the convolution kernel,
respectively, where the number of channels in the convolution kernel equal to the number of
channels in the input image, i.e., D ¼ M ¼ 1, poolingð·Þ is the max pooling function. The
extracted feature image needs to further identify the target and noise in FB-SCAN, in reflectance
measurement mode, the target in GPR echo data usually has specific structural characteristics,
and the noise is generally random. Therefore, the sample set is constructed based on FB-SCAN

and manual labeling to train the classification network, which is used to identify the noise and
target with supervised learning method.

Designed a cascade structure of CNN, and according to the characteristics of direct wave
interference signal strength, the first-level DCNN is used for the extraction of deep semantic
features of the B-SCAN image to determine the location of the direct waves, and the correspond-
ing network structure is shown in the upper half region (a) in Fig. 3. Then for the GPR B-SCAN
image with the direct wave noise removed, the DCNN with multiscale feature fusion is adopted
to extract more complete target feature information, the corresponding network structure is
shown in the lower half region (b) in Fig. 3.

The feature map extraction network is based on CNN, where the convolution kernel size of
the convolution layer is 3 × 3, the activation function is a rectified linear unit function,33 and the
filter size of the max pooling layer is 2 × 2. The network structures shown in Figs. 3(a) and 3(b)

Fig. 3 The brief architecture of proposed CNN for GPR B-SCAN image feature extraction.
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are designed by the characteristics of the network input images, respectively. In Fig. 3(a), the
input signal is the raw GPR echo data, in which the intensity of the direct wave is far outweigh
the target, and high-level semantic features are extracted through multiple convolution and pool-
ing operations, i.e., through 10-layer convolution and pooling processing, 512 feature maps with
a size of 53 × 15 are obtained. In the output layer, considering that the characteristics of the direct
wave signal are usually horizontal and linear, and the texture structure is relatively simple, the
pooling result S5 is up-sampled through cubic interpolation to make the output feature map with
the same spatial dimensions as the input B-SCAN image. As shown in Fig. 3(b), through 14-
layer convolution and pooling processing, 512 feature maps with a size of 126 × 30 are obtained.
The input of the network is a B-SCAN image containing clutters with the direct wave removed
(zero setting), where the clutters are formed by scattering and diffraction when electromagnetic
waves propagate in complex geological scenes. A multilayer feature fusion strategy is adopted in
network design to extract feature maps containing more target information. Accordingly, the M1
layer is the result of feature fusion of the C8 layer and the S7 layer. The size of the feature maps
of the C8 layer and the S7 layer are 1008 × 240 and 504 × 120, respectively. For the feature map
of the C8 layer, a pooling core with a size of 2 × 2 is used for average pooling to make it con-
sistent with the size of the feature map of the S7 layer. The M2 layer is the result of feature fusion
of the C10 layer and the S8 layer, it is similar to the process of M1 layer.

The underground target feature detection models were trained based on 4600 labeled images.
Figure 4 shows the process of proposed model fitting.

The main parameter settings in the network model training process are as follows: The initial
learning rate is set to 0.0001, the max epoch is equal to 25, a total of 115,000 iterations, and
output the current epoch loss after every 100 iterations. The loss function takes the cross-entropy
loss, and the optimization process uses the stochastic gradient descent momentum method. As
shown in Fig. 4, when epoch is approximately equal to 13, the model tends to converge after
50,000 iterations.

Remark 1: The CNN of the cascade structure is designed with GPR physical model as a
priori condition. Direct wave and target signal are processed based on the amplitude and struc-
tural features in B-SCAN image, respectively:

1. Direct wave signal has horizontal linear structure characteristic and large amplitude. The
focus of processing is to locate the area where it is located in the B-SCAN image to remove this
interference signal.

2. In the B-SCAN image after removing the direct wave, the target exhibits the characteristics
of a hyperbolic structure with a downward opening and a large amplitude. The semantic feature
detection network is mainly used to extract the hyperbola with complete structural features.

Fig. 4 The train loss plot of the proposed model fitting.

Wang et al.: Buried target detection method for ground penetrating radar based on deep learning

Journal of Applied Remote Sensing 018503-7 Jan–Mar 2022 • Vol. 16(1)



3.2 GPR B-SCAN Data Augmentation Network

To transform two groups of GPR B-SCAN images with different styles to generate new images
to achieve data augmentation, we assume that the real GPR background image data set, which is
denoted as A, which mainly contains reference scenario information of various complex texture
structure features. GPRMAX toolbox is used to simulate objects (underground cavity and aqui-
fer) in different spatial positions in uniform media, and the obtained B-SCAN image data set,
which is denoted as B, which mainly contains the hyperbolic geometric structure characteristic
of the target. The data set composed of B-SCAN images with complex background texture struc-
ture features of m pieces is denoted as A ¼ fT1; T2; : : : ; Tmg, where Tiði ¼ 1;2; : : : ; mÞ is the
i’th image complex background. The data set constituted by n B-SCAN images with hyperbolic
geometric structure features is denoted a B ¼ fH1; H2; : : : ; Hng, where Hjðj ¼ 1;2; : : : ; nÞ is
the j’th B-SCAN image containing the target. The B-SCAN image containing only complex
background texture structure features can be represented as TA ¼ fTjTCg, where TC is the com-
plex texture features in image T. The B-SCAN image with hyperbolic geometric features and a
simple background texture can be represented as HB ¼ fHjHC;TSg, where HC and TS are the
hyperbolic geometric structure feature and simple background texture structure in image H,
respectively. Furthermore, the B-SCAN images in data setA and B are mapped and transformed,
where the images in data setA have complex background texture features, the images in data set
B have both hyperbolic geometric structure features and simple background texture features.
Thus the generated B-SCAN image has both complex background texture features and hyper-
bolic geometric structure features. This mapping transformation can be described by

EQ-TARGET;temp:intralink-;e008;116;475fðTA → HBÞ ¼ fĤjHC;TS ↔ TCg; (8)

where → is mapping transformation, Ĥ is the generated image, ↔ is transfer. Equation (8) indi-
cates that the integrity of the hyperbolic structure should be maintained in the generated B-
SCAN image, and simple background texture and complex background texture are transferred.

Furthermore, CycleGAN can be used for image style transfer with different texture features
in data set A and B (unpaired), i.e., the mapping transformation can be established by learning
the features of images between data set A and B, and the hyperbolic structure features are
retained in the generated B-SCAN image, but the background texture features are transferred.
The structure of CycleGAN is shown in Fig. 5.

The upper and lower parts of a CycleGAN are dual, and form a circular structure. For the
mapping function GA→B and its discriminator DB, we can introduce an adversarial loss function
LGANðGA→B;DB; A; BÞ. Similarly, the mapping function GB→A and its discriminator DA corre-
sponding adversarial loss function is LGANðGB→A;DA; B; AÞ, which is calculated as

EQ-TARGET;temp:intralink-;e009;116;296LGANðGA→B;DB; A; BÞ ¼ EH∼pdataðHÞ½log DBðHÞ� þ ET∼pdataðTÞ½logð1DBðGA→BðTÞÞÞ�; (9)

EQ-TARGET;temp:intralink-;e010;116;252LGANðGB→A;DA; B; AÞ ¼ ET∼pdataðTÞ½log DAðTÞ� þ EH∼pdataðHÞ½logð1 −DAðGB→AðHÞÞÞ�; (10)

Fig. 5 Architecture of CycleGAN.

Wang et al.: Buried target detection method for ground penetrating radar based on deep learning

Journal of Applied Remote Sensing 018503-8 Jan–Mar 2022 • Vol. 16(1)



where E is the mean function. To ensure that the learned mapping functions are cycle-consistent,
we can use a cycle consistency loss

EQ-TARGET;temp:intralink-;e011;116;711LcycleðGA→B; GB→AÞ ¼ ET∼pdataðTÞ½kGB→AðGA→BðTÞÞ − Tk1�
þ EH∼pdataðHÞ½kGA→BðGB→AðHÞÞ −Hk1�; (11)

where k • k1 is L1 norm, the full objective is

EQ-TARGET;temp:intralink-;e012;116;648LðGA→B; GB→A;DA;DBÞ ¼ LGANðGA→B;DB; A; BÞ þ LGANðGB→A;DA; B; AÞ
þ λLcycleðGA→B; GB→AÞ; (12)

where λ is usually an empirical value, which controls the relative importance of adversarial
loss and cycle consistency loss. We aim to solve the optimization objective function
LðGA→B; GB→A;DA;DBÞ through maximizing DA and DB to improve the discrimination ability
of the network, and minimizing GA→B and GB→A to generate realistic images, i.e.,

EQ-TARGET;temp:intralink-;e013;116;550ðG�
A→B; G

�
B→AÞ ¼ arg min

GA→B;GB→A

max
DA;DB

LðGA→B; GB→A;DA;DBÞ: (13)

The Adam optimization algorithm34 can be further used to optimize Eq. (13).

Remark 2: The data augment method based on the GANs can generate realistic GPR data
to address the scarcity of GPR data, which is different from traditional data augment methods,
such as image translation, scale, cropping, rotation, etc. Especially in dealing with the chal-
lenging problem of lack of field data, GAN-based data sets can be better used for the training of
classification networks. On this context, the proposed method can be better applied to target
detection in complex scenes.

4 GPR Target Detection Experiment

4.1 Data Description

A total of 5050 GPR B-SCAN images are used for experiments, where 4600 images are used for
training the classification network, and 450 images are used for testing. The data are generated
through GPRMAX software simulation, CycleGAN generation, and GPR field measurement.
Specifically, 4000 images are obtained using GPRMAX toolbox, where 1000 images are simu-
lated for cavity and aquifer with 1 and 2 targets, respectively. Due to the lack of field data, the
data generation method based on CycleGAN is adopted to generate 1000 realistic GPR B-SCAN
images, which uses the following two data sets, i.e., 1000 background B-SCAN images are
collected in real geological scenes, and 1000 target foreground B-SCAN images are simulated
in scenes with uniform distribution of background medium. 50 images for experimental veri-
fication obtained by noise addition, sandpit experiment, and field measurement. GPRMAX
simulation are carried out under the framework shown in Fig. 6.

Where Ωc is the concrete slab layer, Ωs is soil layer, and S1 is the contact surface of the two
layers. The upper half-space is filled with air, and in the lower half-space we consider a two-
layered background medium where the upper one is concrete slab layer Ωc, the lower one is soil
layer Ωs. The contact surface of the two layers S1 is rough. The targets, including cavities and
aquifers, are located in layer Ωs. A coordinate system shown in Fig. 6 is set up to facilitate
description. The transmitting and receiving antennas of GPR move along the x direction closely
to the concrete pavement. The scenario is set up as follows.

1. The width along the x direction is 5 m, the depth along the y direction is d1þ d2 ¼ 2 m,
the average thickness of concrete is d1 ¼ 0.25 m.

2. There are four to six concave and convex blocks with a maximum width and height 0.3
and 0.05 m, respectively, which randomly generated at the lower boundary of concrete to
simulate the rough interface (S1) between concrete and soil.
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3. The dielectric constant of soil along the y direction is generated in a random way, con-
sidering the influence of water content in soil at different depths, the range of is set as
9 to 25.

4. The number of targets is set as 1 or 2, and the shape is set to rectangle. (The size of the
cavity is randomly generated between 0.4 to 0.5 m in width and 0.3 to 0.4 m in height;
the width and height of the aquifer are randomly generated between 0.5 to 0.7 m and 0.25
to 0.35 m, respectively.) A single target is randomly distributed in Ωs region, and two
targets are randomly distributed in the left and right half of Ωs, respectively.

4.2 GPR Data Augmentation

It is difficult to acquire a large number of B-SCAN images containing cavities and aquifers by
field measurement. Data set B contains 1000 B-SCAN images simulated by GPRMAX, where
the target is set in a uniform media scenario. Data set A containing 1000 B-SCAN images of the
underground background (without targets and removed the direct-wave) is obtained by field
measurement. CycleGAN is used to convert images with different styles in data set A and B,
to generate realistic GPR B-SCAN images. Four B-SCAN images are selected from data set
A and B for analysis.

Figure 7(a) shows GPR field images with complex background texture features. Figure 7(b)
shows simulated B-SCAN images with hyperbolic geometric structure features of the target and
texture features of the simple background. CycleGAN is used to transform simple background
texture and complex background texture, and the generated B-SCAN images have both hyper-
bolic geometric structure features and complex texture background features, which is as shown
in Fig. 7(c). Thus, the generated realistic B-SCAN images, which can be used to train the
classification network to improve the accuracy of target detection results in GPR field data.

4.3 Direct Wave Detection

In the raw GPR echo data, the direct wave signal has high amplitude. According to this salient
feature, the designed DCNN is used to detect and remove the direct wave in a GPR B-SCAN
image.

As shown in Fig. 8(a), the intensity of the direct wave signal far outweighs the target signal; it
is difficult to judge whether there is a target in the B-SCAN image from subjective vision.
Figure 8(b) shows the extracted direct wave feature map. It can be seen that the method of feature

Fig. 6 Geometry of the simplified 2-D half-space.
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extraction using DCNN can accurately locate the region of the direct wave in the B-SCAN
image. Figure 8(c) shows that the B-CAN image after the direct wave is removed in Fig. 8(a),
where the texture feature information can be seen. It should be noted that the “B-SCAN images”
in the following refers to B-SCAN images all preprocessed with the direct wave removed.

4.4 Target Feature Curve Extraction

The real underground environment is complex and variable, and the collected GPR B-SCAN
images contained various clutters. Figures 9(a) and 9(b) are B-SCAN images obtained by sim-
ulation, which correspond to one cavity and two aquifer targets, respectively. Taking them as
input to the DCNNwith structure shown in Fig. 3(b), and the extracted feature maps are shown in
Figs. 9(c) and 9(d).

From the extracted feature map, in Fig. 9(c), the characteristics of the interface between
concrete and soil medium, as well as the upper boundary characteristics of the cavity are
obtained, but the lower boundary feature of the cavity have not been detected. In Fig. 9(d),

Fig. 8 Example of removing direct wave from B-SCAN image. (a) The raw GPR B-SCAN image;
(b) the direct wave feature map; and (c) GPR B-SCAN image with direct wave removed.

Fig. 7 Generated realistic GPR B-SCAN based on CycleGAN. (a) Field background B-SCAN
images; (b) simulated cavity B-SCAN images; and (c) generated B-SCAN images.

Wang et al.: Buried target detection method for ground penetrating radar based on deep learning

Journal of Applied Remote Sensing 018503-11 Jan–Mar 2022 • Vol. 16(1)



the characteristics of the interface between concrete and soil media, as well as the upper
and lower boundary characteristics of the aquifer, are extracted, and clutters are also
included, which is labeled in Fig. 9(d). Therefore, the extracted feature map also needs
to be classified, meanwhile, it is necessary to further detect the weak feature information
of the target in the B-SCAN image, i.e., the lower boundary characteristic curve of the
target.

Regarding the problem of feature recognition, it should be noted that, as shown in Figs. 9(c)
and 9(d), semantic feature is embodied in the extracted feature map. To improve the accuracy of
feature image recognition by the classification network, in this paper, the feature map is first
mapped to the B-SCAN image to obtain more details, and then manual labeling is adopted
to train the classification network.

Detection of weak characteristic of the target in B-SCAN image, for the convenience of
presentation, the B-SCAN image with a cavity, as shown in Fig. 9(a), is used to analyze
extracting the weak feature curve of the target in local space. Mapping transformation was
conducted between the upper boundary feature map of the cavity, which is shown in
Fig. 9(c), and the B-SCAN image, which is shown in Fig. 9(a), to determine the local
region. The mapping transformation is denoted as Isub and is shown in the dotted line area
in Fig. 10(a). In local space, the characteristic curve corresponding to the maximum ampli-
tude is first detected. Then, the region corresponding to the negative peak characteristic
curve of the scattering field at the medium interface is detected. Finally, the two adjacent
regions are merged, and LS algorithm is used for curve fitting, and the fitting result is used
as the final target lower boundary characteristic curve. In the real scene, the lower boundary
characteristic curve of the target with weaker amplitude is susceptible to various interfer-
ence factors, the accuracy of the detected lower boundary curve can be improved by region
merging.

The intensity of the lower boundary feature information of the target in the B-SCAN image is
weak, and the characteristics of the geometrical structure of the hyperbola with downward open-
ing is not obvious and relatively flat. The convolution kernel Chori shown in Eq. (14) is designed,
which can detect the features of horizontal linear structure well, and the convolution operation of
Isub and Chori is carried out to effectively segment the lower boundary feature curves with weak
intensity and relatively flat structure feature

Fig. 9 Feature map is extracted from the B-SCAN image. (a) B-SCAN image with one target;
(b) B-SCAN image with two targets; (c) feature map of Fig. (a); and (d) feature map of Fig. (b).
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EQ-TARGET;temp:intralink-;e014;116;557Chori ¼

2
666664

0 0 −1 0 0

0 0 −2 0 0

0 0 þ6 0 0

0 0 −2 0 0

0 0 −1 0 0

3
777775
: (14)

The characteristic figure Iseg is the result of the convolution operation between Isub and Chori,
which can be calculated as

EQ-TARGET;temp:intralink-;e015;116;453Iseg ¼ Isub � Chori; (15)

where Chori convolved with the B-SCAN image in local space, and the signals without horizontal
structure characteristics will be suppressed, while the flat characteristic curve of the target can be
well detected. Then, the largest connected domain in Isub is taken as the characteristic curve of
the target, the detection result is shown in Fig. 10(b). In local space, clutter is suppressed by Chori

and the segmentation of the target’s lower boundary characteristic curve, shown in Fig. 11.
There are two cavities in the B-SCAN image, shown in Fig. 11(a). When detecting the lower

boundary characteristic curve of the target in local space, it is affected by the upper feature
hyperbola of the adjacent target. As it shown in Fig. 11(b), we can see that target and clutter
are indistinguishable. Figure 11(c) is the result of Chori convolved with the B-SCAN image in
local space, which shows that the clutter is suppressed while the target features are enhanced.

Further, to detect the negative peak characteristic curve of medium interface in local space,
Isub is first inverted and denoted as I 0sub (I

0
sub ¼ −Isub). Then, the convolution operation between

I 0sub and Chori is carried out in the same process to detect the lower boundary characteristic curve
of the target, i.e.,

Fig. 11 Segment the lower boundary feature curve of the target. (a) B-SCAN image with two
cavities; (b) local space of the left cavity; and (c) the result of feature curve segmentation by
convolution.

Fig. 10 Detection of weak feature curve of target in local space. (a) Local space of a B-SCAN
image; (b) the detected positive peak curve; and (c) the detected negative peak curve.

Wang et al.: Buried target detection method for ground penetrating radar based on deep learning

Journal of Applied Remote Sensing 018503-13 Jan–Mar 2022 • Vol. 16(1)



EQ-TARGET;temp:intralink-;e016;116;735I 0seg ¼ I 0sub � Chori: (16)

The maximum connected domain in I 0seg is regarded as the characteristic curve of the negative
peaks, and the detection result is shown in Fig. 10(c). It can be seen from Figs. 10(b) and 10(c),
the convolution kernel Chori can be effectively used to segment the positive and negative peak
characteristic curves of the scattering field in local space.

5 Analysis of Experimental Results

The test sample set has a total of 450 B-SCAN images, i.e., a single aquifer (S1), a single cavity
(S2), two aquifers (S3), and two cavities (S4) are simulated with 100 images each, respectively.
The other 50 B-SCAN images are obtained by setting spherical stones as clutters in the sim-
ulation scenario, sand pit experiments, and field measurements. Four simulation B-SCAN
images, including target S1–S4, are selected for analysis, which is shown in Fig. 12(a).

It can be seen from the extracted feature map shown in Fig. 12(b), the reflections of signifi-
cant magnitude, and the feature map corresponding to S1 and S3 contains part of the lower
boundary characteristic curve CL of the aquifer. The result shown in Fig. 12(c) is the extraction
results of the characteristic curve (denoted by CP) of the largest amplitude region in the local
space. Compared with aquifer’s feature maps shown in Fig. 12(b), CL is consistent in spatial
position, which also verifies the effectiveness of using the convolution kernel of Eq. (14) to
extract feature curves in the local space. The result shown in Fig. 12(d) is the negative peak
characteristic curve, denoted by CN, of the scattered field at the medium interface in local space,
compared with the result in Fig. 12(c), they are similar in structure and contiguous. Figure 12(e)
is the result of the merged regions corresponding to CP and CN , denoted as ΩP_N . Further, curve
fitting based on LS algorithm is carried out for the upper boundary characteristic curve region
(ΩU) and lower boundary characteristic curve region (ΩP_N) of targets in Fig. 12(e), and the
fitted results are shown in Fig. 12(f). It should be note that when the widths W1 and W2 of
the upper and lower boundaries of the target are calculated according to Eq. (4), the accuracy
is mainly determined by their fitting results. So, we need to determine the principal value interval
(denoted as Ωup and Ωdown) of the target in ΩU and ΩP_N . Specifically, by setting thresholds Tup

and Tdown, only regions with amplitude values greater than Tup and Tdown are retained in ΩU and
ΩP_N , respectively, which can be calculated as

EQ-TARGET;temp:intralink-;e017;116;341Ωup ¼ fΩU > TupjTup ¼ σUAU; AU ¼ maxðΩUÞg; (17)

EQ-TARGET;temp:intralink-;e018;116;297Ωdown ¼ fΩP_N > TdownjTdown ¼ σDAD; AD ¼ maxðΩP_NÞg; (18)

where AU and AD represent the maximum in ΩU and ΩL_N , respectively. σU and σD are adjust-
able parameters, in this paper, we take the empirical value σU ¼ 0.7, σD ¼ 0.6. Curve fitting is
carried out onΩup andΩdown, respectively, to determine the upper and lower boundary character-
istic curves of the target.

Our approach focuses on effectively extracting the feature curve of the target in the B-SCAN
image to further determine its buried depth and size. Compared with the upper boundary char-
acteristic curve of the target, the amplitude of the lower boundary characteristic curve is usually
small, and the detection is more difficult. Combining the physical mechanism of GPR, we pro-
posed a method to detect the weak characteristic curve of the target in a local space, and obtained
satisfactory detection results. The main reason for these results is that, on the one hand, accord-
ing to the possible changes in phase information at the interface between the target and the
background medium [the phase change due to the reflection coefficient is shown in Eq. (6)],
the positive and negative peak curve regions detected in the local space are fused to fit the lower
boundary characteristic curve of the target with a more complete structure [Fig. 12(f)]. On the
other hand, the corresponding convolution kernel, as shown in Eq. (14), is designed with the
structural characteristics of the target characteristic curve as a prior condition, and the target
characteristic curve is segmented by convolution operation, which can largely suppress random
interference signals with large amplitude (Fig. 11). Putting all these together, we can effectively

Wang et al.: Buried target detection method for ground penetrating radar based on deep learning

Journal of Applied Remote Sensing 018503-14 Jan–Mar 2022 • Vol. 16(1)



detect the characteristic curve of the lower boundary of the target with weak intensity in
B-SCAN image.

Remark 3: In the process of extracting the weak lower boundary characteristic curve of the
target in the local space, the convolution kernel shown in Eq. (14) is introduced based on the
structural characteristics of the target characteristic curve, which can well suppress the inter-
ference signal with larger amplitude. And using the phase change information shown in Eq. (6),
the LS fitting process based on regional fusion is mainly to obtain characteristic curves with
complete structure.

To further verify the effectiveness of the DCNN network designed in this paper for extracting
the hyperbolic feature curve of the target, the B-SCAN images collected by adding clutters,
where spherical stones with a radius of 0.1 to 0.25 m are set around the underground target
as clutters, sand pit experiment, and field measurement are tested, respectively. The proposed
method is compared with traditional histogram of oriented gradients (HOG) algorithm and Faster
R-CNN algorithm. The result is shown in Fig. 13.

Fig. 12 Target feature curve detection. (a) Sample images of experiment used for target feature
extraction; (b) feature maps corresponding to the sample images; (c) the detected positive peak
feature curve in local space; (d) the detected negative peak feature curve in local space; (e) com-
bine the region of feature curves detected in Figs. (c) and (d); and (f) fitting results of target upper
and lower boundary feature curves.

Wang et al.: Buried target detection method for ground penetrating radar based on deep learning

Journal of Applied Remote Sensing 018503-15 Jan–Mar 2022 • Vol. 16(1)



Figures 13(a1)–13(a3) are the spherical stone interference source set at different positions
around the aquifer and the cavity target, Fig. 13(a4) is two iron balls set in the sand pit,
Fig. 13(a5) is the measured steel bar in the concrete, and Fig. 13(a6) is the measured spherical
limestone buried under the soil layer.35 Figures 13(b)–13(d) are the detection results of HOG,
Faster R-CNN, and the proposed algorithm, respectively. In Fig. 13(a1), the interference source
is in the middle of two aquifers, there are false detection by HOG algorithm, and the Faster
R-CNN algorithm misses the upper boundary characteristic curves of the target on the right,
while the proposed algorithm effectively detects the upper boundary characteristic curves of
the two targets. In Fig. 13(a2), the interference source is located directly above the aquifer, which
has a serious influence on the structural features of the hyperbola of the target. Faster R-CNN
algorithm failed, while HOG algorithm and the proposed algorithm detect part of the target fea-
ture curves. In Fig. 13(a3), the interference source is far to the upper right of the cavity, and all
the three methods can effectively detect the upper boundary characteristic curve of the target.
Figures 13(a4)–13(a6) are B-SCAN images obtained by sand pit experiments and field measure-
ments, both HOG and Faster R-CNN algorithms failed to detect the target, with a high omission
factor, and the DCNN network designed in this paper can well extract hyperbola features.

The above experimental results on GPR field data and simulation data with interference
sources show that our approach is more robust. The main reason is that the proposed method
is based on the analysis of the GPR physical model and obtained the prior information that the
amplitude of the target scattering electric field in the echo data corresponds to the salient
characteristic hyperbola in the B-SCAN image. On this context, CNN is designed to extract
the high-level semantic features of B-SCAN images and used for the training of the classification
network. Since the semantic features contain less interference information, the network model
is easy to train and can obtain a higher recognition rate. Especially for the field B-SCAN
images with complex background structure features shown in Figs. 13(a4)–13(a6), the influence
of background interference can be greatly reduced by extracting semantic characteristics.
Meanwhile, the GAN-based data enhancement strategy used in this paper also improves the
accuracy of the network’s detection of field data.

To quantitatively analyze the accuracy of target detection results, for the fitted characteristic
hyperbola, the comprehensive evaluation index F is used for measurement, which can be calcu-
lated as

EQ-TARGET;temp:intralink-;e019;116;97F ¼ 2PR
Pþ R

; P ¼ TP

TPþ FP
; R ¼ TP

TPþ FN
; (19)

Fig. 13 GPR target detection experiment in complex environment. (a) Experimental pictures for
testing; (b) the results of HOG algorithm; (c) the results of Faster R-CNN algorithm; and (d) the
results of the proposed algorithm.
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where P is precision and R is recall. TP, FP, and FN indicate true positives, false positives, and
false negatives, respectively. The experimental results are calculated, including HOG algorithm
(A1), Faster R-CNN algorithm (A2), and the proposed algorithm (A3), on 400 images of
B-SCAN test set (100 images of target S1–S4 each), shown in Fig. 14(a). On the whole test
set (450 B-SCAN images), the mean F of the detection results of the three algorithms is shown
in Fig. 14(b).

To objectively compare the detection results of the three algorithms, the detection of the
target’s lower boundary characteristic curves are all carried out in local space. It can be seen
from the statistical results in Fig. 14(a), in general, the mean F of the three algorithms is that
single target is higher than two targets, and aquifer is higher than cavity. This is mainly due to the
fact that the completeness of the target characteristic curve detection result is a major factor,
especially when the two targets are close to each other, the detection results are affected.
Meanwhile, compared with air medium, the relative permittivity of the water medium is larger,
and the speed of electromagnetic waves propagating in it is smaller, which corresponds to the

Fig. 14 Mean F of detection result of target boundary feature curves. (a) The detection results of
three algorithms for different types of targets and (b) mean F of the three algorithms on the entire
data set.
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longer two-way travel time interval in the B-SCAB image, and it is beneficial to reduce the
mutual interference between the hyperbola of the upper and lower boundary of the target.
As shown in Fig. 14(b), compared with the deep learning algorithm Faster R-CNN and the tradi-
tional machine learning algorithm HOG, the experiments on the test set show that our method
has a high detection accuracy rate for both simulated data and field data, and the mean F of the
proposed algorithm is 93.23% and is 5.54% higher than Faster R-CNN algorithm. This also
verifies the effectiveness of the proposed method, which is used to extract feature curve of the
target in the GPR B-SCAN image.

On the basis of obtaining the upper and lower boundary characteristic curves of the target, the
embedded depth D and height H of the target can be further calculated according to Eq. (4), and
the result is measured by the accuracy rate, which is defined as

EQ-TARGET;temp:intralink-;e020;116;604AD ¼ Dmeasure

Dactual

; AH ¼ Hmeasure

Hactual

; (20)

where AD and AH indicate the accuracy rate of the calculation results of the buried depth and
height of the target, respectively. Dactual and Hactual indicate the actual depth and height of the
target respectively, Dmeasure and Hmeasure represent the detection results of target burial depth and
altitude, respectively. The statistical results are shown in Fig. 15.

According to Fig. 15, the proposed algorithm has the highest accuracy for D andH detection
results, with an average accuracy of 94.57% and 93.72%, respectively. According to Eq. (4), the
factors affecting the accuracy ofD andH mainly include the two-way travel time and the relative
permittivity of the medium. The accuracy of the two-way travel time is mainly determined by the
accuracy of the vertex detection results of the upper and lower boundary characteristic curves of
the target. For the relative permittivity of the medium, the estimation of εr is always rough, and
the approximate of the inhomogeneous background medium will also bring errors. Some other
factors will also affect the calculation results of D and H, such as the frequency of the radar, the
conductivity of the medium, the size and depth of the target, etc. The method in this paper proc-
esses the original echo data detected by GPR, and the cascade structure CNN designed to extract
the salient features of B-SCAN images can effectively detect the target feature hyperbola under
certain attenuation conditions. Note that it is constrained by the range resolution of GPR, and its
calculation formula can be expressed as Dr ¼ c∕4fc

ffiffiffiffi
εr

p
. It can be seen that under a certain fc,

the medium with slower detection wave speed can usually obtain a higher Dr. For a cavity target
with a small height H, it will be difficult to effectively detect the lower boundary feature infor-
mation due to the influence of the upper boundary characteristic curve with larger intensity

Fig. 15 Mean accuracy of the buried depth and height of the target.

Wang et al.: Buried target detection method for ground penetrating radar based on deep learning

Journal of Applied Remote Sensing 018503-18 Jan–Mar 2022 • Vol. 16(1)



information and the range resolution. This is also the main reason why aquifers have higher
average accuracy than cavities at the target average height H.

Overall, the experimental results show that both HOG network and Faster R-CNN can obtain
satisfactory detection results for hyperbolic features with complete structure. To effectively
detect the features of the target in a complex background, CNN semantic feature extraction net-
work is designed in this paper and used for the training of classification network, achieving better
recognition results. Meanwhile, when the distance between the upper and lower boundary char-
acteristic curves of the target is large, better detection results of the weak feature of the lower
target can be obtained in the local space. Finally, for the limited amount of field GPR data, the
GAN-based data enhancement method can better train the network model and obtain higher
detection accuracy.

6 Conclusion

Buried target detection from B-SCAN image is achievable using the CNN model based on GPR
physical mechanism. Our approach consisting of three main components: automatic detection of
salient feature information in B-SCAN image, GAN-based generation of realistic B-SCAN
images, and detection of weak feature curve of target in local space. The proposed method has
been evaluated in both simulated and field data, and has been compared with other CNN meth-
ods, i.e., traditional HOG algorithm and Faster R-CNN algorithm. The experimental results show
that, on the comprehensive evaluation index F, the proposed method achieves the optimal result
of 93.23%, which is 5.54% higher than the suboptimal result. In short, our method shows prom-
ising potential to use deep learning-based feature extraction to detect buried target from GPR
field data. Notable, the CNN model designed in this paper focuses on the extraction of feature
information from B-SCAN images, and combining the characteristics of GPR target feature
information to design a more efficient classification and recognition network to improve the
accuracy of target detection results is a work that needs further research in the future.
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