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Abstract. Within the last decades, a large number of techniques for contrast enhancement has
been proposed. There are some comparisons of such algorithms for few images and figures of
merit. However, many of these figures of merit cannot assess usability of altered image content
for specific tasks, such as object recognition. In this work, the effect of contrast enhancement
algorithms is evaluated by means of the triangle orientation discrimination (TOD), which is a
current method for imager performance assessment. The conventional TOD approach requires
observers to recognize equilateral triangles pointing in four different directions, whereas here
convolutional neural network models are used for the classification task. These models are
trained by artificial images with single triangles. Many methods for contrast enhancement highly
depend on the content of the entire image. Therefore, the images are superimposed over natural
backgrounds with varying standard deviations to provide different signal-to-background ratios.
Then, these images are degraded by Gaussian blur and noise representing degradational camera
effects and sensor noise. Different algorithms, such as the contrast-limited adaptive histogram
equalization or local range modification, are applied. Then accuracies of the trained models on
these images are compared for different contrast enhancement algorithms. Accuracy gains for
low signal-to-background ratios and sufficiently large triangles are found, whereas impairments
are found for high signal-to-background ratios and small triangles. A high generalization ability
of our TOD model is found from the similar accuracies for several image databases used for
backgrounds. Finally, implications of replacing triangles with real target signatures when using
such advanced digital signal processing algorithms are discussed. The results are a step toward
the assessment of those algorithms for generic target recognition.© The Authors. Published by SPIE
under a Creative Commons Attribution 4.0 International License. Distribution or reproduction of this work
in whole or in part requires full attribution of the original publication, including its DOI. [DOI: 10.1117/1
.OE.62.4.048103]

Keywords: advanced digital signal processing; convolutional neural networks; image contrast
enhancement; imager assessment; method comparison; triangle orientation discrimination.

Paper 20221420G received Dec. 8, 2022; accepted for publication Mar. 24, 2023; published
online Apr. 20, 2023.

1 Introduction

For remote sensing applications and reconnaissance, acquisition and operation of cameras in
different spectral bands are required, and each has its own pros and cons. The best possible
choice among devices for procurement is therefore dependent on the imager performance for
the desired task, e.g., the detection, recognition, or identification (DRI) of distant targets with a
background composed of vegetation, urban structures, and sky. Camera data can be acquired in
field trials for characterization of single devices. However, these measurements are time con-
suming and expensive. Furthermore, the possession of the device is required. Therefore, mod-
eling and image-based simulation of imagers are useful and important for the assessment of
imagers. Such tools become even more important when scene-dependent advanced digital signal
processing (ADSP) techniques are used in the device, for their impact on performance is difficult
to predict. In this paper, the effect of contrast enhancement (CE) algorithms, which have so far
mainly evaluated in terms of esthetic perception, is considered.
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Triangle orientation discrimination (TOD)1 is a well-established image-based approach for
the characterization of electro-optical system performance, especially for range performance
assessment in remote sensing applications.2 It models the DRI tasks for real targets by a sim-
plified recognition task. The original idea was that an observer has to determine the orientation of
an equilateral triangle directing in four directions (up, down, left, and right) shown on a display,
which is fed by an imaging system. The ability to clearly discriminate the orientation is reduced
depending on different types of degradation, e.g., optical diffraction blur and sensor noise.

However, due to the resurgence of machine learning, automatic target recognition3 is becom-
ing increasingly important. The importance of machine vision applications also led to the emer-
gence of scalable compression frameworks4,5 aimed at high lossy compression while
simultaneously preserving image quality for machine and human vision. In contrast to human
observers, the performance of these methods does not depend on properties of the display but
merely on the digital output of the imaging system. A prominent and frequently used approach
for machine vision is convolutional neural networks (CNN). Such CNN models also have been
trained on artificial images of triangles to perform the TOD discrimination and validated on
acquired camera data.6 Therefore, these models can be used for automated camera tests in the
lab by means of scene projectors.7

In this paper, CNN models for TOD discrimination are trained and validated on degraded arti-
ficial images of single triangles superimposed over natural backgrounds from Open Images V6.8 In
addition, the training data are processed by CE algorithms from Table 1 with equal probabilities.
Then, a trained model is validated on images with varying error levels of background σbackground
and Gaussian noise σnoise. Parts of this work have already been published elsewhere.32

In Sec. 2, the considered CE algorithms, the model setup, and the training procedure are
described. Section 3 shows the accuracies on validation images with varying background and
noise levels. Accuracy differences between individual CE algorithms and identity are shown for
varying values of the signal-to-background ratio SNRbackground, signal-to-noise ratio SNRnoise,
and triangle circumradius r. Finally, results are discussed in Sec. 4, which concludes the paper.

2 Methods

2.1 Considered Contrast Enhancement Algorithms

Several methods for CE have been proposed within the past decades. Various modifications to
conventional global histogram equalization have been proposed to counteract mean brightness
shifts11,12 leading to annoying artifacts and allowing smooth transitions to identity.25,26 Also
learning-based methods33–37 as well as methods based on image decomposition38,39 have been
proposed. The decomposition often relies on color information, making the methods inappli-
cable to single channel image data. However, the scope of this work is limited to easily imple-
mented algorithms, given in Table 1, that operate on single channel image data.

2.2 Data Generation

For the training of models for TOD,1 images of triangles are generated with varying contrasts,
sizes, and four orientations, i.e., up, down, left, and right. Misalignment angles uniformly dis-
tributed in ½−15 deg; 15 deg� are added to the orientation angles of the triangles to make the
models more robust to misalignment. Exceeding the maximum rotation angle 15 deg would lead
to incorrect labeling because rotations of an equally sided triangle by 30 deg result in other
labeled orientations due to the 120 deg rotational symmetry. This rotation is crucial when apply-
ing models on real camera data because some misalignment between the field of view of a cam-
era and a target is unavoidable.

2.3 Background Overlay

Background images are extracted from OpenImages V68 as the random square crops. RGB
images are converted to floating-point grayscale images. Mean μcrop and standard error σcrop
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are calculated within these crops. Then, gray levels Itriangleþoverlayðx; yÞ of an image with single
triangle and background overlay are calculated as

EQ-TARGET;temp:intralink-;e001;116;201Itriangleþoverlayðx; yÞ ¼
� cconstant þ atriangle ðx; yÞ ∈ triangle

cconstant þ σset ·
Icropðx;yÞ−μcrop

σ̃crop
else

: (1)

cbackground is a constant gray level over the entire image. atriangle is an offset value only added
for pixels related to the triangle. In Eq. (1), the pixel values of the image crop Icropðx; yÞ are
normalized by subtracting the mean μcrop and dividing by the corrected error, and

EQ-TARGET;temp:intralink-;e002;116;111σ̃crop ¼
�
σcrop σ > thres

1 else
; (2)

Table 1 25 methods for CE.

Algorithm Author Year

AGC9 Huang et al. 2013

AGCWD9 Huang et al. 2013

BBHE10 Kim et al. 1997

BPDHE11 Ibrahim et al. 2007

BPHEME12 Wang et al. 2005

CLAHE13 Zuiderveld et al. 1994

DCRGC14 Wang et al. 2009

DCTIE15 Tang et al. 2003

DSIHE16 Wang et al. 1999

EHS17 Coltuc et al. 2006

ESIHE18 Tan et al. 2019

FHSABP19 Wang et al. 2008

MMBEBHE20 Chen et al. 2003

MMSICHE21 Singh et al. 2014

MPHEBP22 Wangsritong et al. 1998

NMHE23 Poddar et al. 2013

QDHE24 Ooi et al. 2010

RMSHE25 Chen et al. 2003

RSIHE26 Sim et al. 2007

RSWHED27 Kim et al. 2008

RSWHEM27 Kim et al. 2008

SUACE28 Bandara et al. 2017

LDRHE29 Bulut et al. 2022

LRM30 Fahnestock et al. 1983

WMSHE31 Wu et al. 2010
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with thres ¼ 10−4. Without this correction, Eq. (1) is not well-defined for uniform image sec-
tions because in this case the denominator would be σcrop ¼ 0. Then, the normalized gray levels
related to the cropped natural background are scaled to have a specific standard deviation σset.
Therefore, the signal-to-background ratio is expressed as

EQ-TARGET;temp:intralink-;e003;116;686SNRbackground ½dB� ¼ 10 log10

�
atriangle
σset

�
: (3)

2.4 Degradations

Several image degradations representing typical camera effects are applied. Temporal noise is
applied as uncorrelated additive Gaussian noise. Fixed pattern noise of a sensor is modeled as
line- and column-based additive Gaussian noise. Linear motion blur on the triangle is applied to
represent moving targets. Stabilization errors due to camera vibration are applied as linear
motion blur and Gaussian blur on the triangle with a background overlay. Blur due to optical
diffraction by circular apertures is applied by filters

EQ-TARGET;temp:intralink-;e004;116;541gðx; yÞ ¼ ð2J1ðr∕sÞ∕ðr∕sÞÞ2; (4)

with r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
. These filters represent Airy disks40 as the diffraction patterns of a circular

aperture. J1ðxÞ is the Bessel function of the first kind and first order. To provide optical dif-
fraction blur for varying values of aperture diameter D, detector pixel pitch p, wavelength
λ, and focal length f, a dimensionless scaling factor s is introduced as

EQ-TARGET;temp:intralink-;e005;116;459s ¼ λf
πDp

: (5)

A variety of physical parameters (λ, f, D, and p) can be realized by random sampling of s
from a uniform distribution in ½0.1; smax�. smax ¼ 10 is chosen to limit the proportion of severely
degraded images, which aggravate the model training due to little possible accuracy gains com-
pared with statistical fluctuations. Optical diffraction blur is applied by spatial filtering with
random 2D kernels of width and height K ¼ 6smax. The kernel size K is limited due to lack
of information beyond the borders of images of finite size. The scaling factor s ≤ smax is there-
fore also limited because higher values lead to radial kernel profiles biased by clipping effects
due to the limited kernel size. To reduce aliasing due to the oscillatory form of the Airy disk
[Eq. (4)], larger kernels fij of fosK × fosK pixels are generated with an oversampling factor
fos ¼ 8. These extended kernels are downsampled by average pooling with this oversampling
factor to give K × K kernels gij. Normalized filter kernels are then formed as

EQ-TARGET;temp:intralink-;e006;116;281g̃ij ¼
gijP

K
i 0
P

K
j 0 gi 0j 0

: (6)

Several aliasing effects may occur due to small detector fill factors ff < 1 (the ratio between
the detector dimension and pitch) or different shapes of detector footprints, e.g., rhombic or
circular. These effects can be realized by masking extended kernels of Airy disks fij with the
detector profile before average pooling. However, this option is not used in this work due to the
rare use of nonsquare detectors, low signal-to-noise ratio for low fill factors,41 and faster image
generation.

2.5 Contrast Enhancement

The algorithms in Table 1 are applied on 50% of the degraded image with equal probabilities.
Due to the complex and divergent control flow of some algorithms, these methods are imple-
mented and calculated by a separate application on the CPU. In Fig. 1, pristine training exam-
ples, as well as degraded and ADSP processed ones, are shown. These training examples are
generated online during training to have a practically infinite amount of training data immune to
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overfitting. However, the source of background images and the number of possible crops is large
but finite.

2.6 Model Setup

A conventional CNN architecture shown in Fig. 2 is used for TOD classification on images of
dimensions 2n × 2n. To facilitate the model training, the input image is normalized by linear
shifting and scaling of pixel values to have a mean of 0 and a standard deviation of 1 over spatial
dimensions. Uniform input images with a standard deviation of 0 are not scaled. Then, the nor-
malized image is downsampled by a chain of building blocks until the spatial dimensions are
reduced to 2. Each building block consists of two 2D convolutional layers with 3 × 3 kernels and
rectified linear unit activations (ReLUs) and a subsequent 2 × 2 max pooling layer. Hence,
downsampling by a factor 2 is applied per block. The spatial dimensions are reduced, and the
number of feature maps, given as

Fig. 1 Training examples with associated labels: left (0), up (1), right (2), and down (3). (a) Pristine
training examples, (b) training examples with natural background, degradations, and CE.

Fig. 2 CNN model architecture for TOD classification of 64 × 64 grayscale images. A 64 × 64
image is fed into a chain of blocks. Each block consisting of two 2D convolutional layers with
ReLU activation and subsequent max pooling layer downsamples the spatial dimensions while
increasing the number of feature maps. The last block is followed by two dense layers and a final
softmax layer to provide probabilities for all directions (left, up, right, and down).
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EQ-TARGET;temp:intralink-;e007;116;735nfeature-maps ¼ bN0 · gic; (7)

increases for each block i ≥ 0. b•c is the floor function yielding the largest integer that is smaller
than the argument. Two subsequent dense layers and a final softmax layer provide the proba-
bilities for the four orientations. A default configuration with the initial number of filters
N0 ¼ 20, growth factor g ¼ 1.2, and first dense layer size L ¼ 1024 is arbitrarily chosen.

2.7 Model Training

The models are trained and evaluated by Python 3.9/Tensorflow 2.8. For optimization, ADAM42

with a learning rate η ¼ 0.001 is used. Weights are initialized by He normal initialization.43

Models are trained for N ¼ 1000 iterations. Despite slower training, techniques for acceleration
of training, such as batch normalization,44 weight normalization,45 or adaptive gradient clip-
ping,46 were deliberately omitted to achieve smaller models with faster inference, which are
compatible for running on edge TPUs.47 The loss function is cross entropy.

In each iteration, new sample images of triangles with background overlays are generated on
the fly during the training for data augmentation. Triangles have a random size, position, and arbi-
trary orientation angle in [0 deg, 360 deg]. In addition, these images are impaired by the prescribed
degradations. 50% of the training images were enhanced with one of the 25 methods for CE with
equal probabilities. Corresponding disjoint sets of background images are randomly chosen from
the respective partition of the OpenImages V6 database. For evaluation of model performance over
the degradation parameters, i.e., SNRbackground, SNRnoise, and triangle size, images are generated in
the same way as background images chosen from the test subset of the database.

The question arises how large the percentage of degraded and ADSP processed images in the
training data should be to obtain acceptable accuracies on validation sets of pristine and degraded
images. 64 × 64 models with different percentages of degraded and processed images in the
training data were trained and evaluated on different kinds of validation data. The respective
accuracies on the validation data are shown in Fig. 3. It can be observed that models trained

Fig. 3 Dependency of the validation accuracy on the composition of training sets. Horizontal: per-
centage of degraded images in the training data. Vertical: accuracies on different validation sets,
each with N ¼ Norientations · Nbackgrounds · Nsamples ¼ 400; 000 images, with Nbackgrounds ¼ 1000,
Norientations ¼ 4, Nsamples ¼ 100. “All degradations” include images enhanced with one of the algo-
rithms in Table 1.
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only with pristine images perform very bad on degraded and ADSP processed images with natu-
ral backgrounds. A slight increase of the percentage significantly raises the validation accuracies
on degraded imagery. On the other hand, models trained with a high percentage of degraded
images still perform very well on pristine images. Therefore, to make the best use of the model
capacity for the image degradations and ADSP methods, all models mentioned below are trained
with 100% degraded images, whereas ADSP is applied with 50% probability.

3 Results

3.1 Dependency of Accuracy on Background Variance

A trained 64 × 64 model is validated on images of a fixed target, a centered triangle with a
circumradius of r ¼ 10 pixel. The triangle circumradius r is converted to the often-used square
root area S ¼ ffiffiffiffi

A
p

1 using the Pythagorean theorem:

EQ-TARGET;temp:intralink-;e008;116;561S½pixel� ¼
ffiffiffiffiffiffiffiffiffi
3

ffiffiffi
3

p

4

s
r½pixel� ≈ 1.14r½pixel�: (8)

1000 random crops of different background images from OpenImages V68 were used.
The background variance σbackground of gray levels was varied to have different
SNRbackground ∈ ½0;1; 2;3; 4;5; 10;20� dB. White Gaussian noise was added to have
SNRnoise ∈ ½0;5; 10� dB, where

EQ-TARGET;temp:intralink-;e009;116;458SNRnoise ½dB� ¼ 10 log10

�
atriangle
σnoise

�
; (9)

and atriangle is about one-sixth of the dynamic range. In Fig. 4, accuracies over SNRbackground for
different SNRnoise and corresponding example images for the lowest SNRnoise ¼ 0 dB

are shown.
Obviously, accuracies are about 100% for SNRbackground ≥ 5 dB and SNRnoise ≥ 5 dB. The

accuracies drop monotonically with decreasing SNRbackground. A similar behavior can be
observed for varying triangle sizes, as shown in Fig. 5. As expected, the accuracies also drop
for decreasing triangle sizes. Further variation of the relative triangle position in the subpixel
range shows high fluctuations of accuracies for low triangle circumradius r ¼ 1 pixel. This find-
ing is consistent with the problem of recognition near the resolution limit mentioned before.1

SNRbackground

SNRnoise

SNRnoise

SNRnoise

(b)(a)

Fig. 4 (a) Accuracy over SNRbackground ðdBÞ: fixed triangle circumradius r ðpixelÞ ¼ 10 and varying
SNRnoise ðdBÞ. (b) Example validation images: fixed SNRnoise ¼ 0 dB, four orientations and eight
levels of SNRbackground ∈ ½0;1; 2;3; 4;5; 10;20� dB.
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3.2 Upscaling of Receptive Field

Models according to the CNN architecture shown in Fig. 2 were trained for various resolutions of
receptive fields, i.e., 128 × 128, 256 × 256, 512 × 512, and 1024 × 1024. For 512 × 512 and
1024 × 1024, a reduction of learning rate η ¼ 10−4 was required to achieve significant model
improvements compared with the initial model states. Otherwise, model performances stagnated
on average at 25% guessing rates. In Fig. 6, validation accuracies over SNRbackground are shown
for different sizes of receptive fields.

There is a general trend of decreasing accuracies for larger receptive fields. This may be due
to the fact that larger receptive fields can contain more objects with high similarity to triangles.
Furthermore, the growth factor g ¼ 1.2 for the number of feature maps per block nfeature-maps may
be insufficiently small to provide enough model capacity for an increasing range of triangle sizes
to handle. A surprising fact is the lower accuracies for higher SNRnoise ¼ 20 dB compared with
SNRnoise ¼ 5 dB and receptive fields of 256 × 256 pixels and larger. This might indicate ben-
eficial properties of Gaussian noise by suppressing structures in the background resembling the
triangle target.

3.3 Comparison of Methods for Contrast Enhancement

A trained 64 × 64 model was validated by images processed with the 25 ADSP algorithms
shown in Table 1. Many algorithms only operate on integer pixel values based on gray level
distributions, which are widespread for natural images. Hence, to prevent saturation due to clip-
ping, the pixel values are shifted to have a mean of half of the dynamic range, upscaled by a
factor 28 − 1 ¼ 255 and converted to 8 bit. After ADSP processing, this shifting and upscaling is
reverted, and pixel values are converted to floating point numbers.

In Fig. 7, differences of accuracies between single CE algorithms and the identity are shown
for varying SNRbackground and SNRnoise. For convenience, the algorithms were ranked with
respect to the maximum value, and only the top 10 algorithms are shown.

It can be observed that there are accuracy gains for low SNRbackground < 5 dB, and the accu-
racy differences are quite similar for the top 10 algorithms. Because the accuracy is about 100%
for SNRbackground ≥ 5 dB and SNRnoise ≥ 5 dB without ADSP processing according to Fig. 4, no
significant improvement by CE can be expected for these cases. By contrast, a severe degra-
dation of model performance occurs for some CE algorithms and high SNRnoise ¼ 20 dB.

To validate CE algorithms on a variety of degradations, different triangle parameters and
degradation parameters were varied and uniformly distributed in the ranges given in Table 2.

Ntarget ¼ 1000 random samples of triangles and degradation parameters were combined
with Nbackgrounds ¼ 1000 natural backgrounds as random crops from Open Images V6.8

This procedure was repeated Nchunks ¼ 10 times with varying random seeds, resulting in
different triangles and background images. Model accuracies were calculated on
Ntotal ¼ NchunksNtargetsNbackgrounds ¼ 107 images with 64 × 64 pixels. The same procedure was

SNRbackground

(b)(a)

Fig. 5 (a) Accuracy over SNRbackground ðdBÞ: fixed SNRnoise ðdBÞ ¼ 40 and varying triangle circum-
radius r . (b) Example validation images: triangle circumradius r ðpixelÞ ¼ 2, four orientations, and
eight levels of SNRbackgroundðdBÞ ∈ ½0;1; 2;3; 4;5; 10;20�.
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repeated, with each of the 25 CE algorithms from Table 1 being applied respectively as the final
step. Compared with grid variation of individual triangle and degradation parameters, random
sampling of many of these parameters allows for investigation of individual parameters by arbi-
trary parameter cuts, whereas other parameters are widely distributed. This gives better insights
on possible fluctuations on model performances when those parameters are unknown.

As shown in Fig. 8, accuracy differences between each of the 25 CE algorithms and identity
were calculated for parameter cuts of the triangle circumradius r and the signal-to-background
ratio SNRbackground. Only accuracies on images with values in r ∈ ½1;3� pixel (left),

SNRbackground SNRbackground

SNRbackground SNRbackground

SNRbackground

SNRnoise

SNRnoise

SNRnoise

Fig. 6 Validation accuracy over SNRbackground ðdBÞ for different sizes of receptive fields and
SNRnoise ∈ ½0;5; 20� dB based on N total ¼ Ndirection · Nbackground ¼ 4000 images containing a cen-
tered triangle with circumradius r ¼ 10 pixel, superposed by Nbackground ¼ 1000 different back-
grounds formed by random image crops of respective sizes from the OpenImages V6 test set
andNdirection ¼ 4 triangle orientations. For increasing field size, the model performance decreases.
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r ∈ ½14;16� pixel (right), SNRbackground ∈ ½0;2� dB (left), and SNR ∈ ½18;20� dB (right) were
selected. The interquartile ranges (IRQ), shown as orange boxes, contain values between the
25%-percentile and the 75%-percentile. The IRQs are extended by whiskers by 1.5IRQ at both
sides at maximum, but they are limited by the respective minimal and maximal values in the data.
Outliers are shown as circle markers.
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(a)

(c)

(b)

Fig. 7 Accuracy difference ΔIð%Þ ¼ ICEð%Þ − I0ð%Þ for top 10 CE algorithms ranked with respect
to the maximal value. Accuracies ICE (I0) for every data point are based on evaluations of the
64 × 64 TOD model on N total ¼ Ndirection · Nbackground ¼ 4000 artificial images with (without) CE
containing a centered triangle with circumradius r ¼ 10 pixel, Ndirection ¼ 4 triangle orientations,
and Nbackground ¼ 1000 different backgrounds formed by random image crops from the
OpenImages V68 test set. In addition, before CE, Gaussian noise was added: (a) SNRnoise ¼ 0 dB,
(b) SNRnoise ¼ 5 dB, and (c) SNRnoise ¼ 20 dB.

Table 2 Boundaries for uniformly distributed triangle parameters and
degradation parameters with the image dimensions I ¼ 64 and the
dynamic range DR ¼ 255.

Parameter Min Max

Background level cbackground 0.25DR 0.75DR

Amplitude atriangle −0.25DR 0.25DR

Triangle circumradius r 0 0.25I

Horizontal position 0.25I 0.75I

Vertical position 0.25I 0.75I

SNRbackground ðdBÞ 0 20

SNRnoise ðdBÞ 0 20

Orientation angle α ðdegÞ 0 360
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Obviously, a high SNRbackground and a low triangle circumradius r lead to significant impair-
ment of model accuracies by most of the 25 CE algorithms. Accuracy differences at high triangle
circumradius r and high SNRbackground (right bottom) show small IRQs, as the accuracy is often
saturated at 100% for high SNRnoise. Hence, accuracies for low SNRnoise are rendered as outliers.
For high r ∈ ½14;16� pixel and low SNRbackground ¼ ½0;2� dB (left bottom) only, some CE algo-
rithms show accuracy gains. Also, monotonic transitions of accuracy differences for varying r
and SNRbackground were observed. The reason for the significant impairment at high SNRbackground

could be due to the fact that a narrow gray level distribution of background values leads to
excessive enhancement of the background by most CE algorithms, resulting in textures with
a low dynamic range, steep edges, and a high similarity to the triangle to be discriminated.
On the other hand, a large triangle reduces the number of background pixels and hence their
contribution to the gray level distribution of the entire image. Most of the investigated CE algo-
rithms depend on the image gray level distribution.

(a)

(b)

(a)

(b)

Fig. 8 Whisker-box plots of accuracy differences of the 64 × 64 model between 25 CE algorithms
and identity based on varying cuts for (a) triangle circumradius r ∈ ½1;3� pixel, (b) r ∈ ½14; 16� pixel,
SNRbackground ∈ ½0;2� dB (left), and SNRbackground ∈ ½18;20� dB (right). Insets show examples of
centered triangles for r , SNRbackground in the corresponding ranges with SNRnoise ¼ ∞. For each
algorithm, means (green triangle marker), medians (red lines), IQRs (orange boxes) of accuracy
differences for the counts in the respective parameter intervals are shown (further details in the
text). At high SNRbackground and low triangle circumradius r , the 25 CE algorithms lead to significant
impairment of the model accuracies.
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3.4 Generalization on Background Images of Different Image Databases

To investigate the ability of the TOD model to generalize to a larger variety of background
images, the trained 64 × 64 model was validated on artificial images with a single centered tri-
angle with a fixed circumradius of r ¼ 10 pixel superposed with background images resulting
from random crops of images from different image databases. Examples of such image crops
with 64 × 64 pixels are shown in Fig. 9 for different image databases: Pascal VOC,48

ILSVRC2012,49 FLIR ADAS,50 OpenImages V6,8 Stanford dogs,51 Oxford flowers 102,52

Caltech 101,53 and Gaussian noise.
In Fig. 10, the model accuracies over N ¼ Ndirection · Nbackground images and different

SNRbackground are shown, with Ndirection ¼ 4 triangle orientations and Nbackground ¼ 1000 different
backgrounds from several image databases. In addition, the generated artificial images are
impaired by Gaussian noise with a high noise level SNRnoise ¼ 0 dB (left) and a low noise level
SNRnoise ¼ 20 dB. It can be observed that model accuracies are very similar for most of the
image databases. In contrast, background images of Gaussian noise yield significantly better
accuracies than those of the image databases. Images of FLIR ADAS50 show accuracies between
those of Gaussian noise and the image databases, which may be due to the relatively high noise
content in the FLIR ADAS images. This fact indicates that structured backgrounds from the

Fig. 9 Examples of 64 × 64 random crops of different image databases used as backgrounds:
Pascal VOC,48 ILSVRC2012,49 FLIR ADAS,50 OpenImages V6,8 Stanford dogs,51 Oxford flowers
102,52 Caltech 101,53 and Gaussian noise. Image are converted to single-channel data by aver-
aging over channels of RGB data. For clarity, example images are shown using the colormap
“viridis,” and pixel values are scaled to have a mean that equals the center of the dynamic range
and a standard deviation of one-fourth of the dynamic range. Compared with other image data-
bases, FLIR ADAS contains images with a high noise content.
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image databases have a higher degradational effect on the triangle recognition than Gaussian
noise for equal standard deviations of pixel value fluctuations.

The qualitative behavior of the model accuracy is similar for different databases when apply-
ing the methods for CE. The same is true for the ranges of SNRbackground values, for which CE
yields an improvement in accuracy. For convenience, only an example for applying CLAHE is
shown in Fig. 11.

3.5 Variation of Model Size

The used architectures so far were an arbitrary initial choice. One might ask if similar/better
accuracies could have been achieved by smaller/larger models. To answer this question, further
models were trained based on the default configuration (Sec. 2.6) with modifications of single
parameters, i.e., the initial number of filters N0, the growth factor g, the dense layer size L, and
the number of dense layers. In Fig. 12, validation accuracies for varying initial number of filters
N0, the growth factor g, the dense layer size L, and the number of extra dense layers in addition to
the final dense layer with four units are shown. Models are validated on images with Norientation ¼
4 orientations, Nbackground ¼ 1000, and Nsample ¼ 100 samples, resulting in Ntotal ¼ Norientations ·
Nbackground · Nsample ¼ 400; 000 images. Accuracies denoted with “all degradations” contain
images enhanced by one of the CE algorithms (Table 1) with equal probabilities.
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Fig. 10 Model accuracies over SNRbackground ðdBÞ. For each data point, N ¼ Ndirection · Nbackground

artificial images are generated withNdirection ¼ 4 triangle orientations and Nbackground ¼ 1000 differ-
ent backgrounds used from random crops of different image databases. Gaussian noise is added
with (a) SNRnoise ¼ 0 dB and (b) SNRnoise ¼ 20 dB.
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Fig. 11 Model accuracy differences ΔI ¼ ICLAHE − I Identity over SNRbackground ðdBÞ with accuracies
ICLAHE based on images enhanced by CLAHE and accuracies I Identity for images without CE. For
each data point,N ¼ Ndirection · Nbackground artificial images are generated withNdirection ¼ 4 triangle
orientations and Nbackground ¼ 1000 different backgrounds used from random crops of different
image databases. Gaussian noise is added with (a) SNRnoise ¼ 0 dB and (b) SNRnoise ¼ 20 dB.
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Furthermore, validation accuracies are compared for different activations, i.e., leaky ReLU,54

exponential linear unit (ELU),55 Gaussian error linear unit (GELU),56 scaled exponential linear
unit (SELU),57 APLU,58 tanh, sigmoid,59 softplus,59 softsign,59 and swish.60 It can be observed
that reductions of the dense layer size as low as L ¼ 22, the growth factor g ¼ 0.7, and the
number of filters N0 ¼ 10 result in comparable accuracies compared with the default configu-
ration. Even for a varying number of extra dense layers with L ¼ 1024 units in addition to the
final dense layer with four units, there are only slight variations in accuracies. From the 11 inves-
tigated activations, the ReLU59 from the default configuration (Sec. 2.6) performs very well
compared with most other activations. adaptive piecewise linear unit (APLU) and sigmoid did
not converge at all above the guessing rate of 25%.

3.6 Model Complexity

We did benchmarks of our trained TOD model for 64x64 pixels on our machine (a Ryzen 9
3900X processor with an NVIDIA GeForce RTX 2080Ti graphics card and 64GB RAM).

(a) (b)

(c)

(e)

(d)

Fig. 12 Model comparisons for (a) varying dense layer size, (b) growth factor g, (c) initial
number of filters N0, (d) the number of extra dense layers with L ¼ 1024 units, and (e) different
activation functions. Accuracies on different validation sets, each with N ¼ Norientations ·
Nbackgrounds · Nsamples ¼ 400; 000 images, with Nbackgrounds ¼ 1000, Norientations ¼ 4,
Nsamples ¼ 100. “All degradations” include CE with one of the algorithms in Table 1.
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Table 3 gives the average running time on an NVIDIA GeForce RTX2080Ti, as well as the
number of parameters and floating point operations (FLOPs), which equals twice the number
of multiply-accumulate computations (MACs).

The trained TOD models are smaller and faster compared with current machine vision back-
bones, which are also shown in Table 3. Faster model inference allows for a stronger focus on
several image degradations. Compared with the classification of RGB images in the visible spec-
trum, the TOD models are applicable on single-channel data, and the four triangle classes are
symmetric and balanced. Furthermore, the triangle shape and texture are independent of any
spectral band, in contrast to many image databases in the visible band. This is crucial, e.g., for
range performance assessment of imagers in several infrared spectral bands [long-wavelength
infrared (LWIR), mid-wavelength infrared (MWIR), and short-wavelength infrared (SWIR)].

3.7 Comparison with Other Image Quality Metrics

Different image quality metrics were proposed for assessment of methods for CE, such as abso-
lute mean brightness error (AMBE),20 discrete entropy,12 measure of enhancement (EME) and
EME based on entropy (EMEE),65 QRCM,66 UIQ,67 EBCM,68 and CII.29 A more detailed over-
view of further image quality metrics and methods for CE can be found in another work.69

However, most of these metrics were validated by subjective image quality assessments and
may not correlate well with accuracies of models for TOD recognition or other machine vision
tasks. To investigate some current nonreference metrics on images used in the evaluation of TOD
models, these metrics were calculated for 64 × 64 images with a centered triangle superposed by
backgrounds taken from OpenImages V6 scaled to different SNRbackground and impaired by
Gaussian noise with different SNRnoise. In addition, these images were enhanced by three
CE methods, CLAHE,13 EHS,17 and SUACE,28 which were among the top 10 algorithms in
Fig. 7. In Fig. 13, values for nonreference image quality metrics EBCM,68 EME, EMEE,65 and
entropy12 over SNRbackground are shown.

It can be observed that metric values Q0 are high for low SNRbackground and low SNRnoise,
representing high variances of background and Gaussian noise, respectively. The metric values
Q0 decrease monotonically with increasing SNRbackground and SNRnoise. The only exception is
EBCM for SNRnoise ¼ 20 dB, which we assume is due to the regularization of denominators in
the algorithm. Therefore, low metric values represent conditions under which TOD accuracies
are high. However, very similar metric values Q0 could also be observed when the triangle was
omitted. This indicates that these metrics are mainly determined by background for triangles

Table 3 Model properties and benchmark results on an NVIDIA GeForce RTX 2080Ti.

Model
Input shape (height,
width,# channels) Parameters

FLOPs = 2*MACs
(single image)

Average running time (ms)
(batch size of 64 images,
100 calls, 95% confidence)

TOD 64 × 64 × 1 0.2M 0.2M 8.0� 0.2

TOD 128 × 128 × 1 0.3M 0.3M 8.9� 0.3

TOD 256 × 256 × 1 0.4M 0.4M 20� 4

TOD 512 × 512 × 1 0.5M 0.5M 80� 12

TOD 1024 × 1024 × 1 0.7M 0.7M 87� 13 (16 images)

VGG1661 224 × 224 × 3 138G 30.9G 110� 10

VGG1961 224 × 224 × 3 143G 39.2G 133� 11

ResNet50 v262 224 × 224 × 3 25.6G 7.96G 63.7� 1.5

Inception v363 299 × 299 × 3 23.8G 11.6G 105.8� 1.4

Xception64 299 × 299 × 3 22.9G 1.31G 162� 7
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with r ≤ 10 pixel. Thus, the metrics are weakly or not at all interrelated with the TOD task
performance if the triangle is very small. CEs by the three CE methods generally lead to positive
shifts of the metric values QCE or in other words ΔQCE ¼ QCE −Q0 > 0, which can be inter-
preted as predominant enhancement of the background and noise, which aggravates TOD rec-
ognition. Similar results were found for the evaluation of the full-reference metrics AMBE,20

CII,29 QRCM,66 and UIQ.67 In summary, the metrics can be meaningful for the assessment of
CE, whereas they cannot provide insights if the CE is beneficial for TOD recognition and pos-
sibly other classification tasks with small targets.

4 Conclusion

Accuracies of a sequential CNN model performing TOD discrimination were compared with
respect to 25 different methods for CE. The background overlay was crucial because the accu-
racy is significantly impaired for high background variance and the CE algorithms strongly
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Fig. 13 Means of nonreference metric values Q0 (EBCM,68 EME,65 EMEE,65 and entropy,12 left
column) and metric differences ΔQCE ¼ QCE −Q0 for three CE methods, i.e., CLAHE,13 EHS,17

and SUACE28 (right columns) over Nbackground ¼ 1000 images of 64 × 64 pixels with a centered
triangle with circumradius r ¼ 10 pixel for different SNRbackgroundðdBÞ and SNRnoise ðdBÞ. ΔQCE ¼
0 is shown as a horizontal blue dashed line. Example images with centered triangles superposed
with background and impaired by Gaussian noise with SNRnoise ¼ SNRbackground ¼ 3 dB (bottom),
(left) without CE and (right) CE by the respective algorithm.
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depend on it. Accuracy gains for low signal-to-background ratios SNRbackground < 5 dB and a
sufficiently large triangle r ¼ 10 pixel were shown. Model accuracies on images with randomly
sampled triangle and degradation parameters revealed significant impairment by the investigated
CE algorithms for a high SNRbackground and low triangle circumradius r. The strong fluctuations
of accuracy differences highlight the difficulty in showing clear superiority of individual
algorithms.

Models with increased resolution of the receptive field have shown decreasing accuracies,
which may indicate that the growth of the number of model parameters was insufficient to re-
present the increasing range of triangle sizes. Another reason may be a higher number of back-
ground artifacts mimicking triangles. Larger images have more pixels. Therefore, their gray level
distributions are statistically more stable. Hence, CE algorithms based on these gray level dis-
tributions should provide lower variations in the processed images and the associated accuracies.
To prove this hypothesis, further investigations on larger receptive fields are required.

Variations of model size parameters, i.e., the number of filters N0, the growth factor g, the
number of dense layers, and the activation function, have shown that the used default configu-
ration is close to optimal based on the used model architecture and maximal values of degra-
dation parameters used for the generation of training/validation data. Stronger degradations may
require larger models for optimal accuracies.

The presented method can be used in an analogous way to assess the impact of other scene-
based ADSP on military tasks. Moreover, the trained models can be used together with a test bed
with an infrared scene projector for hardware in the loop testing of images including embedded
ADSP. Finally, the methodology may be easily extended to more sophisticated classification
tasks with real target signatures. In contrast to the triangle, real target signatures also have tex-
tures with spatial variations. Therefore, the gray level distribution and the CE based on it depend
more strongly on the variations within the target, especially if the target covers lots of image
pixels. Features related to these textures may require larger models compared with those inves-
tigated in this work.
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