KEYWORDS: Charge-coupled devices, Acousto-optics, Diffraction, Spectrum analysis, Data processing, Fourier transforms, Signal processing, Interference (communication), Data centers, Signal analyzers
When the acousto-optic device worked on the Bragg model, the non-liner affected the diffraction beam. There were some errors between the diffraction beam deflection peak position and the input signal’s frequency, which reduced the frequency measure accuracy of the acousto-optic spectrum analyzer. Under the existing optical experimental platform, we eliminated the CCD background noise by reducing the threshold firstly, and then we processed the data by four methods, the peak value method, the Gaussian fitting method, the squared cancroids method and the Hilbert transform method. The least frequency measure variance is 31.8 KHz2, the data processed by the Gaussian fitting method. It provides theoretical support for reducing the frequency measurement variance of acousto-optic spectrum analyzer.
A full color 2.2" passive matrix organic light-emitting diodes (OLEDs) with 128 (RGB) * 160 pixels was developed. The display features that driving circuit can transform 18 bits gray-scale data from a PC to the OLED panel via a DVI channel. The size of the pixel was 240μm×240μm, while that of mono sub-pixel is 190μm×45μm. The lifetime of panel was estimated over 5000h because of the use of dual-scan driving technology, and the power consumption of the display was 300mw about when the average luminance of panel reach 40cd/m2.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.