Ultrafast carrier dynamics in Schottky barriers is an extremely active area of research in recent years. The observation of the generation of terahertz pulses from metal/semiconductor interfaces provides a technique to characterize electronic properties of these materials. However, a detailed analysis of these phenomena has not been performed satisfactorily. In this work, the measurements of optically generated terahertz emission from Au/GaAs interfaces are investigated in detail. We observe that, under high laser power excitation, terahertz signals from bare GaAs wafers and Au/GaAs samples exhibit an opposite polarity. The polarity-flip behaviors in the terahertz beams are also observed in the temperature-dependent measurements and the femtosecond pump-generation studies of the Au/GaAs interfaces. These effects can be fully explained in terms of the dynamics of carrier transfer in the Au/GaAs Schottky barriers, which involves the internal photoelectric emission and the electron tunneling effect, and picosecond time constants are found for these processes.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.