Fiber Bragg grating is used in a variety of applications. In this study, we suggest compact, cost-effective coherent anti- Stokes Raman spectroscopy which is based on the pulse shaping methods via commercialized fiber Bragg grating. The experiment is performed incorporating a commercialized femtosecond pulse laser system (MICRA, Coherent) with a 100 mm length of 780-HP fiber which is inscribed 50 mm of Bragg grating. The pump laser for coherent anti-Stokes Raman spectroscopy has a bandwidth of 90 nm and central wavelength of 815 nm with a notch shaped at 785 nm. The positive chirped pulse is compensated by chirped mirror set. We compensate almost 14000 fs2 of positive group delay dispersion for the transform-limited pulse at the sample position. The pulse duration was 15 fs with average power of 50 mW, and showed an adequate notch shape. Finally, coherent anti-Stokes Raman signals are observed using a spectrometer (Jobin Yvon Triax320 and TE-cooled Andor Newton EMCCD). We obtained coherent anti-Stokes Raman signal of acetone sample which have Raman peak at the spectral finger-print region. In conclusion, the proposed method is more simple and cost-effective than the methods of previous research which use grating pairs and resonant photonic crystal slab. Furthermore, the proposed method can be used as endoscope application.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.