In Rome, the expansion of urbanization, the increase of population density, and the subsequent escalation of traffic are common factors in road infrastructure vulnerability, especially when these aspects coexist with the presence of ancient subterranean environments, such as ancient tuff quarries. These wide networks of subterranean structures are often in endangered preservation conditions, also because their position and extension are only partially known. Furthermore, the aerial bombing attacks that the city of Rome experienced during the II World War are considered here as another critical factor favouring ground instability processes. In the present research, the joint exploitation of SAR dataset, "historical photograms", and vectorization of historical records have been applied on circumstanced test areas to estimate the quarries' dimension and typology and to evaluate their conservation state related to these anthropogenic aspects. The aims were addressed mainly with the twofold use of the SAR Cosmo-SkyMed dataset, from the processing of both intensity and phase information contents. The intensity has been used to distinguish low and high backscattering anomalies attributed to the presence of open cast and subterranean structures. The phase information was processed from SAR long time-series, through the PSInSAR method, to test its performance in monitoring cavity stability state. The extraction of Permanent Scatterers was carried out to evaluate its suitability to detect entities of displacement through a wide time span, especially using interpolation maps, to identifying patterns related to ancient hypogea. This stratification of information has been analyzed around endangered areas. Using this method to analyze the features mentioned, a relationship between these anthropic factors and sinkholes was revealed.
In volcanic areas, where it could be difficult to gain access to the most critical zones for carrying out direct surveys, remote sensing proved to have remarkable potentialities to follow the evolution of lava flow, as well as to detect slope instability processes induced by volcanic activity. By exploiting SAR and optical data a methodology for observing and quantifying eruptive processes was developed. The approach integrates HR optical images and SAR interferometric products and can optimize the observational capability of standard surveillance activities based on in-situ video camera network. A dedicated tool for mapping the evolution of the lava field, using both ground-based and satellite data, was developed and tested to map lava flows during the 2011-2015 eruptive activities. Ground based data were collected using the permanent ground NEtwork of Thermal and VIsible Sensors located on Mt. Etna (Etna_NETVIS) and allowed to downscale the information derived from satellite data and to integrate the satellite datasets in case of incomplete coverage or missing acquisitions.
This work was developed in the framework of the EU-FP7 project “MED-SUV” (MEDiterranean SUpersite Volcanoes).
Remote sensing data play an important role for the environmental monitoring because they allow to provide systematic information on very large areas and for a long period of time. Such information must be analyzed, validated and incorporated into proper modeling tools in order to become useful for performing risk assessment analysis. These approaches has been already applied in the field of natural hazard evaluation (i.e. for monitoring seismic, volcanic areas and landslides). However, not enough attention has been devoted to the development of validated methods for implementing quantitative analysis on civil structures.
This work is dedicated to the comprehensive utilization of ERS / ENVISAT data store ESA SAR used to detect deformation trends and perform back-analysis of the investigated structures useful to calibrate the damage assessment models. After this preliminary analysis, SAR data of the new satellite mission (ie Cosmo SkyMed) were adopted to monitor the evolution of existent surface deformation processes and to detect new occurrence. The specific objective was to set up a data processing and data analysis chain tailored on a service that sustains the safe maintenance of the built-up environment, including critical construction such as public (schools, hospital, etc), strategic (dam, highways, etc) and also the cultural heritage sites.
The analysis of the test area, in the southeastern sector of Roma, has provided three different levels and sub-levels of products from metropolitan area scale (territorial analysis), settlement scale (aggregated analysis) to single structure scale (damage degree associated to the structure).
Volcanic Island can be affected by instability phenomena such as landslide and partial collapse events, even in quiescent period. Starting from data collected by an aerial laser scanning survey at cm-level accuracy), a GIS based approach was implemented in order to perform a landslide-susceptibility analysis. The results of this analysis were compared and integrated with data derived from Differential Synthetic Aperture Radar Interferometry (DinSAR) analysis able to identify the most active areas and quantify the on-going deformation processes. The analysis is focused on the on the active volcanic edifice of Vulcano Island and in some areas of Lipari island, both include in the Eaolian Islands in Sicily (Italy). The developed approach represent a step-forward for the compilation of hazard maps furnishing in an overall contest, updated and georeferenced quantitative data, describing the morphology and the present behaviour of the slopes in the area of investigation.
Differential Synthetic Aperture Radar Interferometry (DInSAR) represents a well-established remote sensing technique for the investigation of ground deformation phenomena.Among the DInSAR techniques, the Small BAseline Subset (SBAS) approach exploits ground surface at two mapping scales, low and high resolution, and allows the detection and monitoring of local deformation processes that may affect single buildings or man-made structures in urban areas. This work investigates the capability improvement of the SBAS-DInSAR technique to analyse deformation processes in urban areas by exploiting SAR data acquired by the Cosmo-SkyMed (CSM) constellation in comparison with the results obtained from data of first generation ERS/ENVISAT radar systems of he European Space Agency. In particular, we extracted mean deformation velocity maps as seen by the three different radar systems and, for each coherent pixel, we retrieved the corresponding displacement time series. Our analysis was focused on the Torrino area where independent studies had already revealed significant deformation signals testified by the serious damages on many buildings in the area. Moreover, in order to understand the causes of the CSM observed displacement rates, reaching few cm per year, we also performed a comparative analysis between DInSAR products and independent information derived from electrical resistivity tomography data and geological maps.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.