Residential land (RL), as a typical kind of urban functional zone, plays an important role in urban planning and land census. Recent years have witnessed frequent changes in RL via the process of urbanization. The extraction of RL from high spatial resolution optical images can reflect the status quo of land use/land cover to a certain extent, which is of great significance to land census and urban planning. We adopt a scene classification strategy to extract RL and mainly focus on the extraction of four common types of RL in China: old-style village, low-density high-rise, medium-density low-rise, and low-density low-rise. We design a multifeature hierarchical (MFH) algorithm for RL extraction. First, RL is extracted based on the gray level concurrence matrix and a fuzzy classification algorithm. Then an improved bag-of-visual-words algorithm is introduced to further realize the extraction of RL. The effectiveness of our proposed method is analyzed with a sample dataset and large images. We also analyze the separability among different kinds of RL. We compare the experimental results with those of three other algorithms, and the results demonstrate that the MFH algorithm performs better in terms of the accuracy and efficiency of the RL extraction. The results can provide services for land surveying and urban planning, and the technological processes and experimental design in the algorithm can provide a reference for the research in related fields.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.