PurposeMinimally invasive surgery has advantages in terms of quality of life and patient outcomes. Recently, near-infrared (NIR) fluorescence guided surgery has widely used for preclinical and clinical trials. However, NIR fluorescence has a maximum penetration capability of 10 mm. Radiographic imaging can be a solution to overcome the depth issue of NIR fluorescence. For this reason, the performance of the multimodal imaging system, which integrates annihilation gamma (511 keV) rays, NIR fluorescence, and color images, was evaluated.ApproachThe multimodal imaging system consisted of a laparoscopic module, containing an internal detector for annihilation gamma events and cameras for optical imaging, and a flat module for coincidence detection with the internal detector. The acquired images were integrated by an algorithm with post image processing and registration. To evaluate the performance of the proposed multimodal imaging system, the images of a resolution target, a square bar target filled with a fluorescence dye, and a sodium-22 point source were analyzed. A preclinical test for axillary sentinel lymph node (SLN) biopsy with a rat model was conducted.ResultsThe spatial resolution of color images was equivalent to 4 lp/mm. The modulation transfer function of NIR fluorescence at 1 lp/mm was 0.83. The 511 keV gamma sensitivity and spatial resolution of the point source were 0.54 cps/kBq and 2.1 mm, respectively. The image of 511 keV gamma rays showed almost the same intensity regardless of the thickness of the tissue phantom. In the preclinical test, an integrated image of the SLN sample of the rat model was obtained with the proposed multimodal imaging system.ConclusionsWith the proposed laparoscopic system, a merged image of the sample was obtained with the rat model. The annihilation gamma rays showed penetration capability with the tissue-mimicking phantom superior to that of NIR fluorescence.
Minimally invasive robotic surgery using fluorescence-guided images with a video laparoscope has been widely used because of its advantages of small incision, fast recovery time, and efficiency. However, the penetration depth limitation of fluorescence is a disadvantage caused by the absorption and scattering in tissues and blood cells. If this limitation can be overcome by additional imaging modalities, the surgical procedure can be quite efficient and precise. High-energy annihilation-gamma photons have a stronger penetration capability than visible and fluorescence photons. To characterize and validate a multimodal annihilation-gamma/near-infrared (NIR)/visible laparoscopic imaging system, an internal detector composed of an annihilation-gamma detector and an optical system was assembled inside a surgical stainless pipe with an outer diameter of 15.8 mm and an external detector with a dimension of 100 × 100 mm2 placed at the opposite side of the internal detector. Integrated images of 511-keV gamma rays, NIR fluorescence, and visible light were obtained simultaneously. The 511-keV gamma image could be clearly seen with the acquisition of 5 s, while NIR and visible images could be presented in real time. This multimodal system has the potential for improving the surgery time and the quality of patient care.
KEYWORDS: Monte Carlo methods, Optical simulations, Scattering, Zemax, Charge-coupled devices, Optical imaging, Luminescence, Bioluminescence, Image resolution, Contrast transfer function
Optical imaging techniques are widely used for in vivo preclinical studies, and it is well known that the Geant4 Application for Emission Tomography (GATE) can be employed for the Monte Carlo (MC) modeling of light transport inside heterogeneous tissues. However, the GATE MC toolkit is limited in that it does not yet include optical lens implementation, even though this is required for a more realistic optical imaging simulation. We describe our implementation of a biconvex lens into the GATE MC toolkit to improve both the sensitivity and spatial resolution for optical imaging simulation. The lens implemented into the GATE was validated against the ZEMAX optical simulation using an US air force 1951 resolution target. The ray diagrams and the charge-coupled device images of the GATE optical simulation agreed with the ZEMAX optical simulation results. In conclusion, the use of a lens on the GATE optical simulation could improve the image quality of bioluminescence and fluorescence significantly as compared with pinhole optics.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.