The distribution of wind speed with height will affect the optical turbulence parameters. Based on the reanalysis data of the National Centers for environmental prediction (NCEP), this paper analyzes the monthly and seasonal variations of wind speed in the Tibetan Plateau region during the past 15 years from 2005 to 2020 at Delingha observatory, It is found that the seasonal variation trend of the seeing and 200 hpa wind speed is consistent, and the Fried parameter is negatively correlated with 200 hpa wind speed, which verifies the possibility that the upper air speed can approximately represent the turbulence intensity of the whole layer. The experimental results show that: in autumn and winter, the high altitude wind speed is strong, the seeing is poor, and the astronomical observation imaging effect is poor; In summer, the high altitude wind speed is low and the seeing is good, which is the best time for astronomical observation.
This paper present the diurnal and seasonal variation of Turbulence Kinetic Energy (TKE) dissipation rate ( Ε ) in the Atmospheric Boundary-Layer (ABL) in Hefei area. Doppler spectrum width of wind profiler radar are used to separate the non-turbulent spectral width from the observed spectrum width and estimate ε .It is found that in the lower tropospheric height ε is in the range from 10-6 to 10-3 m2 s-3 . ε showed significant diurnal variation in the boundary-layer, with a smaller value at night and a larger value during the day, and the maximum value 10-3 m2 s-3 appears at the top of the ABL during the daytime. The diurnal variation of ε can be used to demonstrate the change of the boundary-layer height in Hefei area. The boundary-layer height begins to rise after sunrise and reaches the maximum at noon, about 1200 m. The parameter ε also shows significant seasonal variation. The ε and height of boundary-layer increased gradually since spring, reaching a maximum of about 1.3km in autumn and decreasing to the same level as in spring in winter. Because it is not affected by water vapor and temperature, ε from the data inversion of wind profile radar can describe turbulence information more accurately, and the results provide help for the study of matter and energy exchange between earth and air in Hefei area and laser atmospheric transmission etc.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.