Chapter 2

Modeling Optical Scintillation

2.1 Introduction

An optical wave propagating through the atmosphere will experience irradiance
(intensity) fluctuations, or scintillation, even over rel atively short propagation paths.
Scintillation is caused almost exclusively by small temperature variations in the
atmosphere, resulting in index of refraction fluctuations (i.e., optical turbulence).
Theoretical and experimenta studies of irradiance fluctuations generally center
around the scintillation index (normalized variance of irradiance fluctuations)
defined by
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where the quantity | denotes irradiance of the optical wave and the angle brackets
< > denote an ensemble average or, equivaently, a long-time average. In weak
fluctuation regimes [defined as those regimes for which the scintillation index (1)
is less than unity], derived expressions for the scintillation index show that it is
proportional to the Rytov variance for a plane wave
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whereCn2 (m??) is the index of refraction structure parameter, k = 2n/) is the
optical wave number, A (m) iswavelength, and L (m) isthe propagation path length
between transmitter and receiver. The Rytov variance represents the scintillation
index of an unbounded plane wave in weak fluctuations based on a Kolmogorov
spectrum [EQ. (6) in Chapter 1], but is otherwise considered a measure of optical
turbulence strength when extended to strong fluctuation regimes by increasing
either an or the path length L, or both. It is known that the scintillation index
increases with increasing values of the Rytov variance (2) until it reaches a
maximum val ue greater than unity in the regime characterized by random focusing,
so called because the focusing caused by large-scal e inhomogeneities achievesits
strongest effect. With increasing path length or inhomogeneity strength, the
focusing effect isdiminished by multipleself interference, and the peak fluctuations
slowly begin to decrease, saturating at a level for which the scintillation index
approachesunity fromabove. Qualitatively, saturation occursbecause multiplesel f
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interference causesthe optical wavetobecomeincreasingly lesscoherent (spatially)
asit propagates, eventually appearing like extended independent multiple sources,
each radiating with a distinct random phase. In Fig. 2.1 we present a still photo of
atypical cross section of the beam irradiance within the aperture diameter of a
tel escope after propagating 1000 m along ahorizontal path 1-2 mabovetheground.

Figure 2.1 Still photo of laser beam after propagating 1000 m.

2.2 Background on Scintillation

The process of optical wave propagation through random media has been studied
for many years. By random medium, we mean aturbulent medium or onefor which
the index of refraction of the medium exhibits random spatial variations that are
large with respect to optical wavelength. Asyet thereisno tractable solutionto the
problem of irradiance fluctuations from first principles of electromagnetic wave
propagation that appliesto all conditionsof optical turbulence. Early investigations
concerning the propagation of unbounded planewavesand spherical wavesthrough
random media led to the classical monographs published in the early 1960s by
Tatarskii [1] and Chernov [2], but their scintillation results were limited to weak
fluctuations. The saturation effect of the optical wave was first observed
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experimentally by Gracheva and Gurvich [3] in 1965. Thiswork attracted much
attention and stimulated a number of theoretical and experimental studies devoted
to irradiance fluctuations under conditions of strong turbulence.

Based on weak fluctuation theory, Tatarskii[1,4] predicted that the correlation
width of the irradiance fluctuationsis on the order of the first Fresnel zone y/L/k.
The Fresnel zone defines the most effective turbulent cell size in producing
scintillation at distance L fromthe source. That is, turbulent cell sizessmaller than
the Fresnel zone contribute less to scintillation because of the weaker refractivity
fluctuations associated with them, and cell sizeslarger than the Fresnel zone do not
diffract light through alarge enough angleto reach thereceiver at L. Measurements
[5,6] of the irradiance covariance function under strong fluctuation conditions
reveal that the correlation width decreases with increasing values of the Rytov
variance cf and that a large residual correlation tail emerges at large separation
distances. In the strong fluctuation regime the correlation width of irradiance
fluctuations is determined by the spatial coherence radius p, of the optical wave.

In an effort to better understand the theoretical foundation of the saturation
phenomenon, several qualitative models describing the underlying physics
associated with amplitude or irradiance fluctuations were developed in the mid
1970s. Yura[7] generalized Tatarskii’s physical optics model to include the loss
of spatial coherence of thewave asit propagatesinto the strong fluctuation regime.
His results are primarily an order of magnitude estimate rather than a rigorous
quantitative derivation, but he demonstrated that the scintillation index saturates at
avalue on the order of unity. Clifford et al. [8] extended Tatarskii’ s theory to the
log-amplitude variance under strong fluctuations and showed why the smallest
scales of irradiance fluctuations persist into the saturation regime. This latter
model, called the heuristic theory, was subsequently modified by Hill and Clifford
[9]. Although quantitativepredictionsfrom Y ura sphysical model andtheheuristic
theory of Hill and Clifford do not fully agree with other results [10,11], the basic
qualitative arguments presented in these early models are still valid. The first
widely accepted asymptotic theory for the saturation regime under the assumption
of negligibleinner scale was published in 1974 by Gochelashvili and Shishov [12].
Inner-scale model sfor the saturation regimewerelater introduced by Fante[13] for
the plane wave and by Frehlich [14] for the spherical wave. Unfortunately,
numerical results from all these asymptotic theories generally underpredict much
of themeasured data[ 15-18] and simul ation data[19-25] for the scintillationindex
in the strong fluctuation regime.

2.2.1 Models for Refractive Index Fluctuations
Kolmogorov theory assumes that turbulent eddies range in size from amacroscale

to a microscale, forming a continuum of decreasing eddy sizes (recall Fig. 1.3).
Each eddy or cell is considered homogeneous but with a different refractive index
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than its neighbors. The largest cell size smaler than those at which turbulent
energy is injected into a region defines an effective outer scale of turbulence L,
which near the ground is roughly comparable with the height of the observation
point above ground. An effective inner scale of turbulence |,, on the order of
millimeters (near the ground), isidentified with the smallest cell size before energy
isdissipated into heat. The continuous distribution of cell sizes between theinner
scalel, and outer scale L, formsthe inertial range. Because each of the cell sizes
defines a particular refractive index, the Kolmogorov theory predicts that the
distribution of refractive cellsbetween|,and L, followsaninverse power law of the
physical sizeof thecell, with the smallest cellshaving the weakest refractive power
and the largest cells having the strongest.

Numerical results deduced from theoretical models of scintillation depend
strongly on the assumed model for the spatial power spectrum of refractive-index
fluctuations outside the inertial range. Ignoring outer-scale effects, which are
usually notincluded in scintillation studies, the commonly used spectral modelsare
all specializations of (see Sec. 1.2.4)
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where« isthe magnitude of the spatial wave number, | istheinner scale, and f(xl )
is a factor that describes inner-scale modifications of the basic power law form.
The conventional Kolmogorov power-law spectrumischaracterized by f(xl)) = 1,
whereas f(xl,) = exp[—(KIO/5.92)2] in the case of the Tatarskii spectrum [4].
Investigations [21-24,26] have shown that the Hill spectrum is a more accurate
model for scintillation studies, but, because it is described in terms of a second-
order differential equation that must be solved numerically, the Hill spectrum
cannot be used in deriving analytic results. A useful analytic approximation to the
Hill spectrum is given by the modified atmospheric spectrum [27,28] in which

f(lg) = expl- i)
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Plots of the quantity f(xl ) appearingin the Tatarskii spectrum and Eq. (4) for
the modified atmospheric spectrumareshowninFig. 1.9. Theplot for themodified
spectrum exhibits the characteristic “bump” at high wave numbers prior to the
dissipation regime, but differs a little from the plot for the Hill spectrum over
certain wave numbers. Nonetheless, a numerical comparison [28] of various
statistical properties of the optical wave based on the modified spectrum and the
Hill spectrumreveal sdifferencesthat are generally within 1-2% of each other (with
maximum difference of 6%). That is, integration is a smoothing process so the
small difference in these particular spectrum models doesn't strongly affect
numerical computation of the integrals that arise in most calculations.
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In this chapter and in Chapters 3—7 we consider only the case where the
refractive-index structure parameter an is essentially constant, characteristic of a
horizontal path. Modifications of the theory to accommodate slant paths will be
discussed in Chapter 8.

2.2.2 Physical Model for Amplitude Fluctuations

After many years and numerous efforts, there still does not exist arigorous theory
of optical scintillation that adequately covers all fluctuation regimes. Some early
attemptsat modeling amplitude fluctuationsthrough qualitative argumentsdid lead
to the saturation effect under strong fluctuations [7,8,29], but did not address the
focusingregimeinwhichirradiancefluctuationsreach peak values. Hereweextend
some of theearly physical modelsto alsoincludethefocusing regime, and usethese
results as a basis for devel oping more detailed modelsin later chapters.

A turbulent cell or eddy in the Kolmogorov model is created by the mixing of
warm and cool air. Specifically, the ground heats the air layer adjacent to it and
buoyancy forces cause the warm air to risein bubble form. The wind then shears
the buoyant warm bubble of air and entrains the cooler surrounding air in a
turbulent mixture. This creates a warm ambient air with cooler air entrained in
swirling eddies, each of which acts on the propagating optical wave like arandom
focusing (or defocusing) lens. As a coherent wave begins to propagate into the
atmosphere, thewaveisscattered by the smallest of the turbulent cells(onthe order
of millimeters) through diffraction. The largest turbulent cells within the inertial
rangeact asrefractive”lenses’ with focal lengthstypically onthe order of hundreds
of meters or more. Refractive and diffractive scattering processes are compound
mechanisms and the total scattering process acts like a modulation of small-scale
fluctuations by large-scale fluctuations. Small-scale contributions to scintillation
are associated with turbulent cells smaller than either thefirst Fresnel zone /L/k or
the coherenceradius p,, whichever issmallest. In contrast, |arge-scal e fluctuations
of the irradiance are generated by turbulent cells larger than that of either the
Fresnel zone or the so-called “scattering disk” L/kp,, whichever islargest. The
scattering disk L/kp, is defined by the refractive cell size | at which the focusing
angle 6 ~ /L isequal to the average diffraction angle 6, ~ L/kp, (seeFig. 2.2).

Therelative sizes of the various effective scal esdescribed above areillustrated
as afunction of propagation distance L in Fig. 2.3 for a propagating plane wave
with wavelength A = 1.06 pm. The structure parameter is assumed to be fixed at
C? =5x10 8 m 23, andinner-scaleand outer-scal e effectsareignored. Theonset
of strong fluctuations occursjust beyond 200 m where the various curvesintersect.



72

Chapter 2
[« L »

T

2 ——

R

T
2py Bp ~ Mpo ~ Lkp,

R

Figure 2.2 Schematic illustration of the focusing angle 6. and diffraction angle
0p. The scattering disk is defined as that scale size | in which these angles are
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Figure 2.3 Relative scalesizesvs. propagation distancefor aninfinite planewave.
The point of intersection denotes the onset of strong fluctuations.

Under the assumption of statistical isotropy for the atmosphere and the paraxial
approximation, asingle eddy can bemodeled asif it werea*“thin” Gaussian-shaped
dielectriclens (seeFig. 2.4). Wedefinetheradius R (m) of the Gaussian lensto be
the 1/e distance from the center of the index distribution. Thus, if a plane wave
with constant amplitudeisincident on such alens, we can usethe ABCD ray matrix

approach to infer the effective focal length of the eddy (see Sec. 1.8). The ABCD
matrix for the eddy is given by the product
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where n, is the index of refraction associated with the eddy size, n, = 1 is the
refractive index of free space, and sn=n, -n,=n, - 1. Based on Eq. (5), the
effective focal distance of the eddy is

R/2

f ~ .
on

[m] (6)

Plane wave Receiver plane
z=0 z=L

(b)

Figure 2.4 lllustration of (a) a plane wave incident on a single eddy modeled as
a Gaussian-shaped dielectric lens with effective radius R, and (b) the interface of
theleft and right halves of the diel ectric lenswith refractiveindex n, insidethelens
and n, outside.
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If theturbulent eddy is closeto thetransmitter, atypical eddy size R~ 1-3 cmwill
belarger than the Fresnel zone size but lessthan the coherence radius of the optical
wave (e.g., see Fig. 2.3), provided the root-mean-sgquare (rms) index of refraction
difference satisfies |dn| < 10°°. Inthiscasethe planewaveincident on the eddy
is considered coherent and the implied focal length from (6) is on the order of
f ~ 5-15km. Clearly, theaveragefocal distancef decreaseswith the size R of the
eddy and fixed rmsrefractive-index fluctuations |dn| , and also decreaseswith fixed
eddy size and stronger rms refractive-index fluctuations |dn| .
The simplest physical model leading to optical scintillation is associated with
a plane wave incident on a “sheet” of turbulent refractive cells (see Fig. 2.5) for
which the sheet thickness satisfies Az« L -z. For wavelengths of interest, the
scattering of the optical wave by the eddies is primarily in the forward direction.
Let usassumethe planewavein Fig. 2.5iscoherent in the plane z= 0 with constant
amplitude A, and is propagating aong the positive z-axis. In general, the wave
incident on the sheet at distance z > 0 from the transmitter will be only partially
coherent because of theloss of spatial coherence caused by atmospheric turbulence
up to the sheet. By concentrating on a single eddy with radius R smaller than the
coherence radius, and temporarily neglecting the effect of the random medium
between the sheet and thereceiver plane, we can use beam-wave analysisto express
the on-axis amplitude in the receiver plane as
A = i , z/=L-z. 7)
J(@ - Z76)? + (22/1kR?)?
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Figure 2.5 Schematic illustration of the propagation geometry for a plane wave
incident on a sheet of turbulent cells (eddies).
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The subscript i appearing on the left side of Eq. (7) denotes a single eddy in the
sheet. Because(7) isbased onanisolated finite aperture of radius Rassociated with
the eddy, the total on-axis field amplitude in the receiver planeis given by

A=A A

where A isthe contribution to the field amplitude from the rest of the (empty)
sheet. Thequantity A, can be calculated from Babinet’ s principle by subtracting
the portion of the wave field A, that passes through the eddy aperture from the
amplitude A, of theincident field. Thisaction leadsto

At = Po~ Ager
where Aa\oer can be deduced from (7) by setting |f | =, i.e,
_ Ay
R p— C)

J1+ (22//kR?)?

Hence, the total on-axis field amplitude in the receiver plane becomes

At:AO+Ai_Aaper

In many practical terrestrial applications the propagation distance L from the
sourceto thereceiver will be much lessthan thefocal distancef of thetypical large
eddies. Thus, by defining 3A, = A -A, = A - A, and assuming L/f«1, we
obtain to afirst-order approximation in L/f the amplitude fluctuations given by

(_A .
Ay

where <> denotes an ensemble average over] therandomfocal lengths. By recalling
the structure function relation <(5n)2> = C2R23 from Sec. 1.2.3, we can use Eq,.
(6) to rewrite EqQ. (9) as

<(z/Ify%>

= —— 1 9)
1+ (2z//kR2)?

(10)

5A, 2> C2(z/)2R48
Ay 1+(2z/IkR?)?

We note here that the ratio 5A, /A, for small amplitude fluctuationsisroughly the
same as fluctuations in the log-amplitude (or log-irradiance) of thefield [1,4].
Next, we examine the effect of the other turbulent cellsin the sheet. If wesum
termslike 6A, fromall eddiesin the sheet and assume the fields from independent
eddy lensesare uncorrelated, then <sA, 6A /A0> Oforj #i. Thus,theamplitude



76 Chapter 2

fluctuations in the receiver plane will be essentially a sum of independent
contributions from large-scale refractive eddies (R 4, >/L/k) and small-scale
diffractive eddies (Ry,. <VL/K), i.e,

2 2

dlffrac

2

Cn (Z/)ZR -4/3
1 + (22//kR?)?

Gsheet Z< Ao

Cn (Z/)ZR -4/3
1 + (22//kR?)?

(11)

R~Rgrac R~ Ritfrac

To include the effect of the turbulent medium between the sheet and the receiver
plane, we assume there exist many refractive and diffractive eddies of size R
between the sheet and the receiver. We can then average each termin (11) over the
number of these scale sizes in the propagation path, which isroughly L/R [4,29].
Also, the average of (z/)? over the path is on the order of L2. Therefore, we are
led to an order of magnitude expression for thetotal contributionsto the amplitude
fluctuations given by
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where we have written o> ~ C k76 116
Excluding the inner and outer scales, the most effective refractive and
diffractive cell sizes appearing in (12) are given by

_ ] LUKk, (weak fluctuations)
Retrac L/kp,, (strong fluctuations),

(13)

_ JyLk, (wesk fluctuations)
Rytract Py, (strong fluctuations).

From (12) and (13) we can deduce the general behavior of the amplitude
fluctuations in various regimes by properly selecting the effective refractive and
diffractive scale sizes for the given regime. For example, when the inner scale is
negligible the dominant scale size under weak fluctuationsis R~y/L/k. Inthis case
therefractiveand diffractivetermsin (12) both lead to expressionsontheorder of 01

However, therefractive and diffractive effects can each be only somefraction of 01
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because their sum in thisregime must equal oi. Wheninner-scalel,ispresent, itis
often the dominant scale size and may be larger than the Fresnel zone (i.e.,
I »\/_) Thus, if we neglect the diffractiveterm |n£12) andsetR~1, |nthef|rst
term we obtain the geometrical optics result [4] o4~ o (L/KI2)™6 ~C2L3|, "
Although the geometrical optics approximation ignores diffraction effects the
influence of diffraction is always present and tends to weaken the focusing effect
of the random large lenses.

With strong fluctuations approaching the saturation regime we consider
situations in which the turbulent sheet and the receiver plane are both located
farther fromthe source. Inthiscasethelossof spatial coherence of the optical wave
will affect which eddiesin the sheet are till strong enough to focusthewave. That
is, the ability of agiven cell sizeto focusapartially coherent wave islessthan that
for a coherent wave. Because of the loss of spatial coherence of the optical wave
under strong fluctuations, only the largest eddies near the transmitter have any
effective focusing effect on the illumination of small diffractive eddies near the
receiver. Thelossof coherencealso limitsthe maximum size of the effective small-
scale eddies near thereceiver. That is, in the saturation regimethe effectlve small-
scale eddy size is roughly that of the spatial coherence radius p, ~ (CZ2k?L) %®
where Po «\/_k By setting R~ p, in the second expression in (12) we obtain
(02 giirae ~ 01(02) 1 ~1, which represents the upper bound for small-scale
fluctuations. Thisresult isthe small-scale saturation effect demonstrated by Y ura
[7] using amore detailed analysis. Similarly, the most effective large-scale eddy
size under strong fluctuations is that of the scattering disk L/kp,. Here, the
substitution of R~ L/kp,, into the first expression in (12) yields (cj) .. ~ L/o*®
and the sum of diffractive and refractive effectsgivesus 6, ~ 1 + lo of - oo,
To within a scaling factor in the second term, this last result is the expron
deduced from the asymptotic theory (see Sec. 1.7.2).

Between weak fluctuations and saturation lies the onset of strong fluctuations
and the focusing regime, neither of which is a simple limiting case involving the
well-defined scale sizes given in (13). Once again the large eddies near the
transmitter have the greatest focusing effect on small eddies near the receiver and,
consequently, are responsible for peak scintillation in the focusing regime. Asthe
optical wave propagates beyond thisregimethe continued | oss of spatial coherence
weakens the focusing effect and eventually leads to saturation as described above.
Approaching strong fluctuations the large-scale refractive cells lie somewhere
between the size of the Fresnel zone and that of the scattering disk. Thus, we
assume R ~[L/k + (L/kp,)?*?, which reduces to the scattering disk under
sufficiently strong fluctuations. Similarly, small-scale diffractive cellslie between
the size of the Fresnel zone and the spatial coherence radius, and therefore we
assume R, ~[U(L/K) + Upg Y2. In this case the sum of refractive and
diffractive fluctuations deduced from Eq. (12) are of the form



