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Chapter 2

Modeling Optical Scintillation

2.1 Introduction

An optical wave propagating through the atmosphere will experience irradiance
(intensity) fluctuations, or scintillation, even over relatively short propagation paths.
Scintillation is caused almost exclusively by small temperature variations in the
atmosphere, resulting in index of refraction fluctuations (i.e., optical turbulence).
Theoretical and experimental studies of irradiance fluctuations generally center
around the scintillation index (normalized variance of irradiance fluctuations)
defined by

where the quantity I denotes irradiance of the optical wave and the angle brackets
< > denote an ensemble average or, equivalently, a long-time average.  In weak
fluctuation regimes [defined as those regimes for which the scintillation index (1)
is less than unity], derived expressions for the scintillation index show that it is
proportional to the Rytov variance for a plane wave

where  (m-2/3) is the index of refraction structure parameter,  is theC 2
n k � 2 /

optical wave number,  (m) is wavelength, and L (m) is the propagation path length
between transmitter and receiver.  The Rytov variance represents the scintillation
index of an unbounded plane wave in weak fluctuations based on a Kolmogorov
spectrum [Eq. (6) in Chapter 1], but is otherwise considered a measure of optical
turbulence strength when extended to strong fluctuation regimes by increasing
either  or the path length L, or both.  It is known that the scintillation indexC 2

n

increases with increasing values of the Rytov variance (2) until it reaches a
maximum value greater than unity in the regime characterized by random focusing,
so called because the focusing caused by large-scale inhomogeneities achieves its
strongest effect.  With increasing path length or inhomogeneity strength, the
focusing effect is diminished by multiple self interference, and the peak fluctuations
slowly begin to decrease, saturating at a level for which the scintillation index
approaches unity from above.  Qualitatively, saturation occurs because multiple self
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interference causes the optical wave to become increasingly less coherent (spatially)
as it propagates, eventually appearing like extended independent multiple sources,
each radiating with a distinct random phase.  In Fig. 2.1 we present a still photo of
a typical cross section of the beam irradiance within the aperture diameter of a
telescope after propagating 1000 m along a horizontal path 1–2 m above the ground.

Figure 2.1 Still photo of laser beam after propagating 1000 m.

2.2  Background on Scintillation

The process of optical wave propagation through random media has been studied
for many years.  By random medium, we mean a turbulent medium or one for which
the index of refraction of the medium exhibits random spatial variations that are
large with respect to optical wavelength.  As yet there is no tractable solution to the
problem of irradiance fluctuations from first principles of electromagnetic wave
propagation that applies to all conditions of optical turbulence.  Early investigations
concerning the propagation of unbounded plane waves and spherical waves through
random media led to the classical monographs published in the early 1960s by
Tatarskii [1] and Chernov [2], but their scintillation results were limited to weak
fluctuations.  The saturation effect of the optical wave was first observed
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experimentally by Gracheva and Gurvich [3] in 1965.  This work attracted much
attention and stimulated a number of theoretical and experimental studies devoted
to irradiance fluctuations under conditions of strong turbulence.  

Based on weak fluctuation theory, Tatarskii [1,4] predicted that the correlation
width of the irradiance fluctuations is on the order of the first Fresnel zone L/k.
The Fresnel zone defines the most effective turbulent cell size in producing
scintillation at distance L from the source.  That is, turbulent cell sizes smaller than
the Fresnel zone contribute less to scintillation because of the weaker refractivity
fluctuations associated with them, and cell sizes larger than the Fresnel zone do not
diffract light through a large enough angle to reach the receiver at L.  Measurements
[5,6] of the irradiance covariance function under strong fluctuation conditions
reveal that the correlation width decreases with increasing values of the Rytov
variance  and that a large residual correlation tail emerges at large separation2

1
distances.  In the strong fluctuation regime the correlation width of irradiance
fluctuations is determined by the spatial coherence radius 0 of the optical wave.

In an effort to better understand the theoretical foundation of the saturation
phenomenon, several qualitative models describing the underlying physics
associated with amplitude or irradiance fluctuations were developed in the mid
1970s.  Yura [7] generalized Tatarskii’s physical optics model to include the loss
of spatial coherence of the wave as it propagates into the strong fluctuation regime.
His results are primarily an order of magnitude estimate rather than a rigorous
quantitative derivation, but he demonstrated that the scintillation index saturates at
a value on the order of unity.  Clifford et al. [8] extended Tatarskii’s theory to the
log-amplitude variance under strong fluctuations and showed why the smallest
scales of irradiance fluctuations persist into the saturation regime.  This latter
model, called the heuristic theory, was subsequently modified by Hill and Clifford
[9].  Although quantitative predictions from Yura’s physical model and the heuristic
theory of Hill and Clifford do not fully agree with other results [10,11], the basic
qualitative arguments presented in these early models are still valid.  The first
widely accepted asymptotic theory for the saturation regime under the assumption
of negligible inner scale was published in 1974 by Gochelashvili and Shishov [12].
Inner-scale models for the saturation regime were later introduced by Fante [13] for
the plane wave and by Frehlich [14] for the spherical wave.  Unfortunately,
numerical results from all these asymptotic theories generally underpredict much
of the measured data [15–18] and simulation data [19–25] for the scintillation index
in the strong fluctuation regime.

2.2.1  Models for Refractive Index Fluctuations

Kolmogorov theory assumes that turbulent eddies range in size from a macroscale
to a microscale, forming a continuum of decreasing eddy sizes (recall Fig. 1.3).
Each eddy or cell is considered homogeneous but with a different refractive index
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n( ) � 0.033C 2
n

&11/3 f( l0), (3)

f( l0) � exp� 2/ 2
l 1 � 1.80( / l) � 0.25( / l)

7/6 , l � 3.3/l0. (4)

than its neighbors.  The largest cell size smaller than those at which turbulent
energy is injected into a region defines an effective outer scale of turbulence L0,
which near the ground is roughly comparable with the height of the observation
point above ground.  An effective inner scale of turbulence l0, on the order of
millimeters (near the ground), is identified with the smallest cell size before energy
is dissipated into heat.  The continuous distribution of cell sizes between the inner
scale l0 and outer scale L0 forms the inertial range.  Because each of the cell sizes
defines a particular refractive index, the Kolmogorov theory predicts that the
distribution of refractive cells between l0 and L0 follows an inverse power law of the
physical size of the cell, with the smallest cells having the weakest refractive power
and the largest cells having the strongest.  

Numerical results deduced from theoretical models of scintillation depend
strongly on the assumed model for the spatial power spectrum of refractive-index
fluctuations outside the inertial range.  Ignoring outer-scale effects, which are
usually not included in scintillation studies, the commonly used spectral models are
all specializations of (see Sec. 1.2.4)

where  is the magnitude of the spatial wave number, l0 is the inner scale, and f( l0)
is a factor that describes inner-scale modifications of the basic power law form.
The conventional Kolmogorov power-law spectrum is characterized by ,f( l0) � 1
whereas  in the case of the Tatarskii spectrum [4].f( l0) � exp[� ( l0/5.92)2]
Investigations [21-24,26] have shown that the Hill spectrum is a more accurate
model for scintillation studies, but, because it is described in terms of a second-
order differential equation that must be solved numerically, the Hill spectrum
cannot be used in deriving analytic results.  A useful analytic approximation to the
Hill spectrum is given by the modified atmospheric spectrum [27,28] in which  

Plots of the quantity  appearing in the Tatarskii spectrum and Eq. (4) forf( l0)
the modified atmospheric spectrum are shown in Fig. 1.9.  The plot for the modified
spectrum exhibits the characteristic “bump” at high wave numbers prior to the
dissipation regime, but differs a little from the plot for the Hill spectrum over
certain wave numbers.  Nonetheless, a numerical comparison [28] of various
statistical properties of the optical wave based on the modified spectrum and the
Hill spectrum reveals differences that are generally within 1–2% of each other (with
maximum difference of 6%).  That is, integration is a smoothing process so the
small difference in these particular spectrum models doesn’t strongly affect
numerical computation of the integrals that arise in most calculations.
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In this chapter and in Chapters 3–7 we consider only the case where the
refractive-index structure parameter  is essentially constant, characteristic of aC 2

n

horizontal path.  Modifications of the theory to accommodate slant paths will be
discussed in Chapter 8.

2.2.2  Physical Model for Amplitude Fluctuations

After many years and numerous efforts, there still does not exist a rigorous theory
of optical scintillation that adequately covers all fluctuation regimes.  Some early
attempts at modeling amplitude fluctuations through qualitative arguments did lead
to the saturation effect under strong fluctuations [7,8,29], but did not address the
focusing regime in which irradiance fluctuations reach peak values.  Here we extend
some of the early physical models to also include the focusing regime, and use these
results as a basis for developing more detailed models in later chapters.

A turbulent cell or eddy in the Kolmogorov model is created by the mixing of
warm and cool air.  Specifically, the ground heats the air layer adjacent to it and
buoyancy forces cause the warm air to rise in bubble form.  The wind then shears
the buoyant warm bubble of air and entrains the cooler surrounding air in a
turbulent mixture.  This creates a warm ambient air with cooler air entrained in
swirling eddies, each of which acts on the propagating optical wave like a random
focusing (or defocusing) lens.  As a coherent wave begins to propagate into the
atmosphere, the wave is scattered by the smallest of the turbulent cells (on the order
of millimeters) through diffraction.  The largest turbulent cells within the inertial
range act as refractive “lenses” with focal lengths typically on the order of hundreds
of meters or more.  Refractive and diffractive scattering processes are compound
mechanisms and the total scattering process acts like a modulation of small-scale
fluctuations by large-scale fluctuations.  Small-scale contributions to scintillation
are associated with turbulent cells smaller than either the first Fresnel zone  orL/k
the coherence radius 0, whichever is smallest.  In contrast, large-scale fluctuations
of the irradiance are generated by turbulent cells larger than that of either the
Fresnel zone or the so-called “scattering disk”  whichever is largest.  TheL/k 0 ,
scattering disk L/k 0 is defined by the refractive cell size l at which the focusing
angle  is equal to the average diffraction angle  (see Fig. 2.2).F ~ l/L D ~ 1/k 0

The relative sizes of the various effective scales described above are illustrated
as a function of propagation distance L in Fig. 2.3 for a propagating plane wave
with wavelength .  The structure parameter is assumed to be fixed at� 1.06 µm

, and inner-scale and outer-scale effects are ignored.  The onsetC 2
n � 5×10&13 m &2/3

of strong fluctuations occurs just beyond 200 m where the various curves intersect.
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θF ~ l/L2l

    2ρ0 θD ~ λ/ρ0 ~ 1/kρ0
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Figure 2.2 Schematic illustration of the focusing angle F and diffraction angle
D.  The scattering disk is defined as that scale size l in which these angles are

equal.

Figure 2.3 Relative scale sizes vs. propagation distance for an infinite plane wave.
The point of intersection denotes the onset of strong fluctuations.

Under the assumption of statistical isotropy for the atmosphere and the paraxial
approximation, a single eddy can be modeled as if it were a “thin” Gaussian-shaped
dielectric lens (see Fig. 2.4).  We define the radius R (m) of the Gaussian lens to be
the 1/e distance from the center of the index distribution.  Thus, if a plane wave
with constant amplitude is incident on such a lens, we can use the ABCD ray matrix
approach to infer the effective focal length of the eddy (see Sec. 1.8).  The ABCD
matrix for the eddy is given by the product
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where n1 is the index of refraction associated with the eddy size,  is then2 � 1
refractive index of free space, and   Based on Eq. (5), then � n1 � n2 � n1 � 1.
effective focal distance of the eddy is

Figure 2.4 Illustration of (a) a plane wave incident on a single eddy modeled as
a Gaussian-shaped dielectric lens with effective radius R, and (b) the interface of
the left and right halves of the dielectric lens with refractive index n1 inside the lens
and n2 outside.
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If the turbulent eddy is close to the transmitter, a typical eddy size  cm willR ~ 1�3
be larger than the Fresnel zone size but less than the coherence radius of the optical
wave (e.g., see Fig. 2.3), provided the root-mean-square (rms) index of refraction
difference satisfies .  In this case the plane wave incident on the eddy� n� � 10&6

is considered coherent and the implied focal length from (6) is on the order of
.  Clearly, the average focal distance f decreases with the size R of thef ~ 5�15 km

eddy and fixed rms refractive-index fluctuations , and also decreases with fixed� n�
eddy size and stronger rms refractive-index fluctuations .� n�

The simplest physical model leading to optical scintillation is associated with
a plane wave incident on a “sheet” of turbulent refractive cells (see Fig. 2.5) for
which the sheet thickness satisfies .  For wavelengths of interest, thez « L � z
scattering of the optical wave by the eddies is primarily in the forward direction.
Let us assume the plane wave in Fig. 2.5 is coherent in the plane z = 0 with constant
amplitude A0 and is propagating along the positive z-axis.  In general, the wave
incident on the sheet at distance z > 0 from the transmitter will be only partially
coherent because of the loss of spatial coherence caused by atmospheric turbulence
up to the sheet.  By concentrating on a single eddy with radius R smaller than the
coherence radius, and temporarily neglecting the effect of the random medium
between the sheet and the receiver plane, we can use beam-wave analysis to express
the on-axis amplitude in the receiver plane as

Figure 2.5 Schematic illustration of the propagation geometry for a plane wave
incident on a sheet of turbulent cells (eddies).
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Aaper �
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1 � (2z )/kR 2)2
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The subscript i appearing on the left side of Eq. (7) denotes a single eddy in the
sheet.  Because (7) is based on an isolated finite aperture of radius R associated with
the eddy, the total on-axis field amplitude in the receiver plane is given by

At � Ai � Arest ,

where  is the contribution to the field amplitude from the rest of the (empty)Arest
sheet.  The quantity  can be calculated from Babinet’s principle by subtractingArest
the portion of the wave field  that passes through the eddy aperture from theAaper
amplitude A0 of the incident field.  This action leads to 

Arest � A0� Aaper ,

where  can be deduced from (7) by setting , i.e.,Aaper � f � � �

Hence, the total on-axis field amplitude in the receiver plane becomes 

At � A0 � Ai � Aaper .

In many practical terrestrial applications the propagation distance L from the
source to the receiver will be much less than the focal distance f of the typical large
eddies.  Thus, by defining  and assuming , weAi � At� A0 � Ai� Aaper L/f « 1
obtain to a first-order approximation in  the amplitude fluctuations given byL/f

where < > denotes an ensemble average over the random focal lengths. By recalling
the structure function relation  from Sec. 1.2.3, we can use Eq.<( n)2> � C 2

n R 2/3

(6) to rewrite Eq. (9) as

We note here that the ratio  for small amplitude fluctuations is roughly theAi /A0
same as fluctuations in the log-amplitude (or log-irradiance) of the field [1,4].

Next, we examine the effect of the other turbulent cells in the sheet.  If we sum
terms like  from all eddies in the sheet and assume the fields from independentAi
eddy lenses are uncorrelated, then  for   Thus, the amplitude< Ai Aj /A

2
0 > � 0 j � i .
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Rrefract ~ L/k , (weak fluctuations)
L/k 0 , (strong fluctuations) ,

Rdiffract ~ L/k , (weak fluctuations)

0 , (strong fluctuations) .
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fluctuations in the receiver plane will be essentially a sum of independent
contributions from large-scale refractive eddies  and small-scale(Rrefract > L/k )
diffractive eddies , i.e.,  (Rdiffract < L/k )

To include the effect of the turbulent medium between the sheet and the receiver
plane, we assume there exist many refractive and diffractive eddies of size R
between the sheet and the receiver.  We can then average each term in (11) over the
number of these scale sizes in the propagation path, which is roughly  [4,29].L/R
Also, the average of  over the path is on the order of   Therefore, we are(z ))2 L 2 .
led to an order of magnitude expression for the total contributions to the amplitude
fluctuations given by

where we have written   2
1 ~ C 2

n k 7/6L 11/6 .
Excluding the inner and outer scales, the most effective refractive and

diffractive cell sizes appearing in (12) are given by

From (12) and (13) we can deduce the general behavior of the amplitude
fluctuations in various regimes by properly selecting the effective refractive and
diffractive scale sizes for the given regime.  For example, when the inner scale is
negligible the dominant scale size under weak fluctuations is .  In this caseR ~ L/k
the refractive and diffractive terms in (12) both lead to expressions on the order of 2

1 .
However, the refractive and diffractive effects can each be only some fraction of 2

1
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because their sum in this regime must equal  When inner-scale l0 is present, it is2
1 .

often the dominant scale size and may be larger than the Fresnel zone (i.e.,
 Thus, if we neglect the diffractive term  in (12) and set R ~ l0 in the firstl0 » L/k) .

term, we obtain the geometrical optics result [4] 2
A ~ 2

1 (L/kl 2
0 )7/6 ~ C 2

n L 3l &7/3
0 .

Although the geometrical optics approximation ignores diffraction effects, the
influence of diffraction is always present and tends to weaken the focusing effect
of the random large lenses. 

With strong fluctuations approaching the saturation regime we consider
situations in which the turbulent sheet and the receiver plane are both located
farther from the source. In this case the loss of spatial coherence of the optical wave
will affect which eddies in the sheet are still strong enough to focus the wave.  That
is, the ability of a given cell size to focus a partially coherent wave is less than that
for a coherent wave.  Because of the loss of spatial coherence of the optical wave
under strong fluctuations, only the largest eddies near the transmitter have any
effective focusing effect on the illumination of small diffractive eddies near the
receiver.  The loss of coherence also limits the maximum size of the effective small-
scale eddies near the receiver.  That is, in the saturation regime the effective small-
scale eddy size is roughly that of the spatial coherence radius 0 ~ (C 2

n k 2L )&3/5

where  By setting  in the second expression in (12) we obtain0 « L/k . R ~ 0
 which represents the upper bound for small-scale( 2

A)diffrac ~ 2
1 ( 2

1)
&1 ~ 1 ,

fluctuations.  This result is the small-scale saturation effect demonstrated by Yura
[7] using a more detailed analysis.  Similarly, the most effective large-scale eddy
size under strong fluctuations is that of the scattering disk .  Here, theL/k 0
substitution of  into the first expression in (12) yields  R ~ L/k 0 ( 2

A)refrac ~ 1/ 4/5

and the sum of diffractive and refractive effects gives us 2
A ~ 1 � 1/ 4/5 , 2

1 � � .
To within a scaling factor in the second term, this last result is the expression
deduced from the asymptotic theory (see Sec. 1.7.2).

Between weak fluctuations and saturation lies the onset of strong fluctuations
and the focusing regime, neither of which is a simple limiting case involving the
well-defined scale sizes given in (13).  Once again the large eddies near the
transmitter have the greatest focusing effect on small eddies near the receiver and,
consequently, are responsible for peak scintillation in the focusing regime.  As the
optical wave propagates beyond this regime the continued loss of spatial coherence
weakens the focusing effect and eventually leads to saturation as described above.
Approaching strong fluctuations the large-scale refractive cells lie somewhere
between the size of the Fresnel zone and that of the scattering disk.  Thus, we
assume , which reduces to the scattering disk underRrefract ~ [L/k � (L/k 0)

2]1/2

sufficiently strong fluctuations.  Similarly, small-scale diffractive cells lie between
the size of the Fresnel zone and the spatial coherence radius, and therefore we
assume .   In this case the sum of refractive andRdifract ~ [1/(L/k) � 1/ 2

0]
&1/2

diffractive fluctuations deduced from Eq. (12) are of the form


