Chapter 4

Imaging of Extended Objects
with Finite Sources

The Fraunhofer diffraction equations derived in the last chapter assume self-
luminous point objects. Photomasks used in optical lithography require illumina-
tion by light sources that are physically extended. In addition, we must generalize
our imaging formulation to consider mask patterns that in reality have finite dimen-
sions.

We begin this chapter by studying image formation of a finite object under
coherent illumination (by a point source) in which the fields of all object points
have a definite phase relationship with one another. We shall find that coherent
imaging is characterized by a transfer function that is essentially the point spread
function of the imaging system. For a photomask illuminated by a finite source,
despite incoherence between source points making up the extended source, vibra-
tions at different object points are correlated due to diffraction of the illumina-
tion optics. Analysis under such partially coherent imaging scenarios requires the
concept of spatial coherence. Similar to the theory of temporal coherence (quasi-
monochromatic light), we need to quantify the correlation of vibrations between
two points as a function of their separation and of the characteristics of the light
source. We shall learn that partially coherent imaging is characterized by a set of
transmission cross-coefficients that is related to the coherent transfer function and
the illumination configuration.

4.1 Coherentillumination

Since the relative phase between vibrations at any two object points is fixed under
coherent illumination, we can characterize the imaging system by a transfer func-
tion Ho(X,, Y Xi, Yi ), defined as the field dk;,y;) on the image plane caused by an
object source point &tx;,y,) with unit amplitude and zero phase. For a complex
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52 Imaging of Extended Objects with Finite Sources

field Up(x5,Y,) on the object plane, the field on the image plane is

Ui(:30) = [ ] ol Yo Mol Yo 30) el (4.1

We shall develop the relationship betweldn(X;,Y,;%i,yi) and the point spread
function of the system.
Consider a point source located(&f, v, ):

Uo(xijvy/o) = 6(Xg - X:)) ’ 6(% - y/o)'
The field on the image plane is
Ui(Xi7Yi) = HO(ng%;Xivyi)' (42)

But the field on the image plane arising from a point sourdeat, ) is also given

by the Fraunhofer diffraction formula. If we scale all object space dimensions by
the lateral magnificatioM and furthermore reflect thé-axis and they,-axis with
respect to the origin, such that an object point and its geometrical image have the
same coordinates:

Xo = —MX| and  yo=—My,,

the Fraunhofer diffraction formula of Eq. (3.20) becomes
+00
Ui(%,¥i) 201// Po(N, & Xo, Yoi X, yi )& AR +E0—%0)] g g, (4.3)

whereC, is a constant anéo(n,z;xo,yo;xi,yi) is thepupil functionthat character-
izes the aperture. Comparing Eq. (4.2) with Eq. (4.3) we can express the transfer
function as

+00
Ho(%0, Yo1%i: Y1) :Cl// Bo(N, & Xo, Yoi Xi, i )& ARINCS )40 -¥0)] dndie.

Let us focus on optical systems of which the transfer function depends on the
difference between the image and object coordinggesxo, Yi — Yo) but not on the

iFor the optical system depicted in Fig. 2.7, the relationship between object and image coordinates
is
X=Mx and  yo=MYy,
whereM’ < 0. In this text, the lateral magnificatidvl always denotes a positive quantity such that
M = |M’| (see footnote on p. 27).



Chapter 5

Resolution and Image
Enhancement

Itis natural, before using an optical imaging instrument, to understand its resolving
power. Traditionally, resolution is a measure of the ability of an imaging system
to separate images of two neighboring object points. Although, within the confines
of geometrical optics, the image of a point is sharp, the actual image is smeared
because of diffraction. When the diffraction patterns of two point objects overlap
and their principal maxima draw closer, it becomes more difficult to distinguish the
objects.

Hence there is no precise resolution limit because it depends on the recording
medium. An approximate measure of resolution can be specified using the heuris-
tic criterion of Rayleigh (J. W. Strutt) [20-22]. Images of two point objects of equal
brightness are considered just resolved when the principal maximum of one coin-
cides with the first minimum of the other. For an imaging system with a circular
aperture that has a point spread function described by Eqg. (3.23), the resolution
according to Rayleigh’s criterion is

Ao
0.61NA.

In optical lithography and integrated circuit fabrication, we are concerned not
only with delineation of patterns that are placed closely with one another, but also
with reliable replication of small features. To refine Rayleigh’s criterion in order to
distinguish between these two requirements, let us defingnum half-pitchas the
measure of object denseness; and denote the smallest size of an individual feature
by minimum dimensiarMinimum dimension relates to the speed of a transistor,
while minimum half-pitch determines transistor integration density.

Since imaging under partially coherent illumination is characterized by the mu-
tual intensity, with the transmission cross-coefficient, defined by the pupil and il-
lumination configuration, taking a role analogous to a frequency transfer function,
we expect that the resolution is closely related to the transmission cross-coefficient.
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76 Resolution and Image Enhancement

In this chapter we examine the minimum half-pitch and dimension of an imag-
ing system illuminated by a quasi-monochromatic extended source of mean wave-
lengthA = A and a semi-aperture angle at the image planBy,gf Our analysis
focuses on circular pupils, the shape used exclusively in optical lithography. The
analysis technigues, nevertheless, are applicable for pupils of general shapes.

5.1 Image intensity spectrum
Since minimum half-pitch measures denseness of patterns, it is determined by the

image intensity frequency content. By Fourier transformation of Eq. (4.37) we ob-
tain the spectrum of the image:

(f.6) = // (3, 9)e" 2 %0 agdy
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The image contains a frequency compon(e‘r)@) only if there is another compo-
nent(f”,§") such that

TCC(]?—i— f”,g+@” f”,Q") -

~

J[3B.ap+f+f.a+6+6)A @+ .6+6") dpdq £ 0.

According to Fig. 4.8, this condition is satisfied if the effective source and the
displaced pupils overlap. For circular apertures, Fig. 4.8 can be redrawn as Fig. 5.1.
Since the radius of the pupil in normalized units is 1, the displaced coherent fre-
quency transfer functiontd(p+ f + f”,§+§+¢") andH (p+ f”,§+§") can over-
lap only if




Chapter 6

Obligue Rays

We have, so far, treated light as a scalar quantity. Such treatment is adequate for
light traveling at shallow angles with respect to the optic axis. At larger angles
we need to consider the vector nature of light vibrations. Our investigations are
concerned with the electric field vector only, since, as Otto Wiener demonstrated in
his 1890 experiment, photochemical action is related to the electric rather than the
magnetic vector.

6.1 Polarization
Consider a time-harmonic plane wave traveling inztérection:
U(zt) = Aetilke@),

Since the electric field vector is perpendicular to the propagation direction [see
Eq. (1.25)], we can express the electric field as

Ey = axe+i(q&+kz—mt)’
Ey — aye—s—i((py-i-kz—wt)
Ez - 0

(6.1)

)

iDependence on the electric but not the magnetic vector is a consequence of electromagnetic
theory. Photoresist exposure is an ionization process in which an electron is released from an atomic
bond. The electromagnetic force on a charged particle at rest is proportional to the electric vector
according to thé.orentz law
F=q(E+vxB). (1.10)

Quantum mechanically, the ionization process is a result of electron-photon interaction at optical
frequencies that excites the system from one energy eigenstate to another. At such frequencies the
electric dipole approximation is valid and the interaction Hamiltoriamvolves only the electric
field [41]:

H=qr-E.
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98 Oblique Rays

Ap=n/2

T<AQ<37/2 A$p=3m/2 3m/2<A¢p<2m

Figure 6.1: Linear polarization (A@ = nr,n € Z) and circular polarization (ax =
ay,Ap= (2n+1)11/2,n € Z) are special cases of elliptic polarization.

If we pick an arbitrary point and observe the trajectory of the end-point of the
electric field vector, its locus is, in general, an ellipse (see Exercise 6.1). The field
is elliptically polarized In the special case where

Ap=@,—@=nm, necZ,

Ey _ ndy

E. (-1) 3 (6.2)
The field islinearly polarized The electric field vector vibrates back and forth
along a straight line. In the other special situatioriofularly polarizedlight, the

amplitudes and phasesBf andE, are related by

(2n+1)m
o
The trajectory of the end-point of the electric field vector is a circle. These polar-
ization states are illustrated in Fig. 6.1.

Although monochromatic light is always polarized, vibrations of the electric
and magnetic vectors in a field produced by a quasi-monochromatic extended
source is generally neith@olarized(completely regular) nonnpolarized(totally
irregular). They argartially polarized Similar to the concept of spatial coherence
in which the vibrations at two points are somewhat correlated (see §84.3.1), field-
vector vibrations of partially polarized light are somewhat regular. The extent of
regularity is characterized by tliegree of polarization

To determine the polarization properties of light, consider a quasi-monochro-
matic wave propagating in thedirection. The electric field vector at an arbitrary
point is

ax=a and @ —@= neZz.

Ex(t) = ay(t)etiet-al and  Ey(t) =a,(t)e®O-a



Chapter 7

Aberrations

We have, thus far, assumed the image-forming wavefronts to be spherical. As we
understand from Chapter 2, the emerging wavefronts from the pupil are in general
aspherical, even if the lens surfaces are spherical. Deviation of wavefronts from
sphericity is calledberration’

Within the domain of geometrical optics, an aberrated image can be examined
by considering the intersection of aberrated rays with the image plane. Such treat-
ment, adequate for instruments in which the aberrations are on the order of wave-
lengths, is known as th&eidel theory of aberration8ut the precision required of
imaging systems in optical lithography means that the wave aberration is a small
fraction of the wavelength. In this situation, the geometrical theory loses its valid-
ity; the Seidel treatment is insufficient. We need to study the effects of aberrations
based on diffraction theory.

7.1 Diffraction of an aberrated wavefront

Consider the imaging scenario shown in Fig. 7.1, where a spherical wavéfroht
uniform amplitude and of radiuR converges toward its centBs, which is defined

as the origin. Let us denote the aberrated wavefront that intersects W at the center
of the pupil byW’, the points at which an imaging ray interseé¢sandW’ by

Q and @/, and the distance betweé&ph and Q@ measured along the ray Bydg.
According to the Huygens-Fresnel principle [Eq. (3.11)], the field at a @®iint

the neighborhood d? is

o k(R-rp) g+i2®g
U(P):// ds (7.1)
g Rrp

'In addition to Born and Wolf [6], Mahajan [48] provides a detailed discussion on aberrations.
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134 Aberrations

Figure 7.1: Diffraction of an aberrated wavefront.

Let (n,&,X) be the coordinates @, let (x,y,z) be those oP, and denote the
radius of the pupil by,. We also define the variablég, @) and(r, ) such that

X=rcosy, y =rsiny,
N=popcosp, &= popsing.

SinceQ lies on the spherical wavefront,

IR (A2 — _(pof))z
X=—1/R—(pop)* = R[l e T ]

If R> pp andR > /x2+y2+22, we can make the approximation (see Exer-
cise 7.1)

—k(R—rp) = %W
~ 2}\”{ —z[l— (F;OF‘;)Z)Z} +pi§rc08(cp— UJ)} (7.2)
= —211[[3?005((4)— g) — 2<sm2160m - 622)} ;
where X X y y

x>
<>

~ A/sinBoy;  Ag/NA’ " A/sinBop;  Ag/NA’

r = o Z
= VRt Z

~ A/sinBoy, A/ Sir? 8op;

(7.3)

-



Chapter 8

Numerical Computation

The theoretical developments in the last chapters have provided us with equations
that describe optical imaging in photolithography. With these equations, images
of objects can be computed in lieu of carrying out exposures. The possibility to
simulateallows us to harness the power of affordable computers to predict images
of object patterns, and to optimize the object and exposure configuration given
a desired image. In this chapter we discuss common numerical formulations for
imaging simulation.

8.1 Imaging equations

Summarizing results of previous chapters, the imaging equation for a system with
lateral magnificatio is [from Egs. (6.14) and (6.68)]:

A X x ~ ~

I(Wz):K/~--/J<f2@>ﬁ<f+f@ §)A"(f+ .6+
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(f,§)0°(f",")e 2™ dfdgdf'dgdf dg’, (8.1)
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152 Numerical Computation

where
K — J Mimage for coupling image [see Eq. (6.14)]
LA for resist image [see Eq. (6.68)]

Nimage is refractive index of image space

o is real part of resist refractive index

X

(f,§) is the effective source (4.31)

" s 8/ I Minaod*8 vizmo(p.o) if Po < SiNBopj
H(f,9) = {\/T e if Po < SiNBoy;, (6.69)

0 otherwise
~ J ~
(0,9 = 3 ¢Zi(p,9), (7.10)
=1

M(F.g) = Mo(f,4) for coupling image [see Eq. (6.14)]
’ Mstack ,8) for resist image [see Eq. (6.68)]
Mo, Mo,

Moxy Moyy
Mo,, Mo,

Mo =

Bay+Py Ray+Ryy
Pz Rz

(6.13)

Pox+ I:)xHx Pny + I:)yx]

2
a
I:)xLx = 1Eyz’ Pny = —7[3

a a?
Pay=— l_By2> Riy= 1 _7y27 (6.10)

Pciz=0, Pyix =0,
a2y

Ix = Wa
apy B2y

By =12 Riy =1y (6.12)

Ptz: —a, Psz: B,

P

Ms, Ms,

Msstack= M&y MSW

[Ms, Ms,

r Xy, Xy,

FiRPax+ F‘ PxHx FLPny+F‘ Pny
y y

= |FiPay+F Ry FLRuy +F 7 Ryy

z z

Fn Pz FH yllz

(6.66)




Chapter 9
Variabilities

In replicating an integrated circuit layout during fabrication, the same object shapes
are often delineated numerous times. Because of unavoidable variabilities of a man-
ufacturing process, the delineated shapes are generally different from the nominal
shapes and from one another. This variability should be kept under the specified
tolerance according to which integrated circuits are designed. Too much deviation
causes circuit failure.

An understanding of the various causes of variation is helpful in devising means
to reduce, stabilize, and compensate for the undesirable variation. Although all pro-
cessing steps (such as deposition, lithography, etching, and chemical-mechanical
polishing) contribute to patterning nonuniformity, we focus on variabilities arising
from optical imaging, since, with both layout shapes and image tolerance shrink-
ing rapidly compared witthg/NA, control of image variabilities is of increasing
concern. Lithography becomes more difficult with decreag&ingndky, . ;.-

9.1 Categorization

We can classify the causes of lithography variability into two categories. One af-
fects object shapes located in identical environments, and the other impacts the
same object shapes situated within distinct configurations of neighboring shapes.
Let us call the effects of the forméuctuationsand those of the latténherent vari-
ations The same cause can result in both fluctuation and inherent variation. On the
other hand, a fluctuation and an inherent variation may have similar manifestations.
To distinguish fluctuation from inherent variation we must first expound the
meaning of environment. Let us definéeatureas an object shape within a partic-
ular configuration of neighboring shapes. The shapardB in Fig. 9.1, although
identical, are distinct features because their environments of shapes are different.
The periodic space described by Eq. (5.5) is a feature that is fully specified by its
foreground and background transmittaigendtyg, sized, and periodpy. A peri-
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A®2 )
. ||
A,

A, B,

Figure 9.1: A feature is an object shape within a particular configuration of neigh-
boring shapes. A and A’ are the same feature if we identify edge Aq with A} and Ay

with A,
odic line feature is similarly determined by these four parameters:

A {tbg if R—npy| <d/2, neZz,

Oq(X) = 9.1
X(%) trg otherwise. ©-1)

The orientation of a feature does not constitute its environment. For example, a
y-varying periodic line described by

A o fthg if J—npy| <d/2, nez,
Oy(y) = {tfg otherwise,

is the same feature as that described by Eq. (9.1), provided they have thggame
trg, andd, and i = py.

With this understanding of “feature,” we can define fluctuation as the variability
of the same feature, and inherent variation as the difference, excluding fluctuation,
between distinct features of the same object shape. Referring to Fig. 9.1, the differ-
ence between the delineated shapeA ahdA’' (and that between those Bfand
B') is fluctuation. So are differentiations between their delineated shapes across an
exposure field, from wafer to wafer, and from lot to lot. The distinction between
the averaged image of all replicasAfandA’ (and those oB andB') is inherent
variation.

By this demarcation, we can perceive fluctuations as arising from engineering
imperfection while inherent variations as consequences of the laws of physics. The
variation in the images of periodic spaces with the same nominal dimedgiat
different periodicities follows from Eq. (4.35) because of differences in their spec-
tra. But no physical law dictates that images of a feature at two points in the field of
an optical instrument should differ. The difference one may observe can be caused
by aberration fluctuations of the imaging system.





