Paper
13 July 2007 Frequency domain, time-resolved and spectroscopic investigations of photosensitizers encapsulated in liposomal phantoms
Author Affiliations +
Abstract
A broadband frequency domain fluorescence lifetime system (from ns to ms time scale) has been developed to study the photochemical and photodynamic behavior of model, well-controlled photosensitizer-encapsulating liposomes. Liposomes are known to be efficient and selective photosensitizer (PS) drug delivery vesicles, however, their chemical and physical effects on the photochemical properties of the photosensitizer have not been well characterized. The liposomes employed in this study (both blank and photosensitizer-complexed) were characterized to determine their: a) size distribution (dynamic light scattering), b) image (scanning electron microscope, confocal fluorescence microscopy), c) concentration of particles (flow cytometry), d) temperature-dependant phase transition behavior (differential scanning calorimetry, and e) spectrofluorescent spectrophotometric properties, e.g. aggregation, in the confined environment. The fluorescence decay behavior of two families of encapsulated photosensitizers, di-and tetrasulfonated metallophthalocyanines, and 2-(1-hexyloxyethyl)-2-devinyl pyropheophorbide (HPPH), has been examined as a function of the liposome's physical properties (size-scale, distribution and concentration of scatterer) and the impact of the photosensitizer spatial confinement determined. It is found that the achievable size range and distribution of the PS-liposomes is controlled by the chemical nature of the PS for large liposomes (1000 nm), and is PS independent for small PS-liposomes (~140nm). The lifetime decay behavior was studied for all three photosensitizer-liposome systems and compared before and after confinement. We found the nature of the decay to be similar before and after encapsulation for the sulfonated phthalocyanines containing ionic moieties (primarily monoexponential) but not for HPPH. In the latter, the decay transitioned from multi- to monoexponential decay upon localizing lypophilic HPPH to the liposomal membrane. This behavior was confirmed by obtaining a similar change in lifetime response with an independent timedomain system. We also varied the environment in temperature and oxygen content to examine the effects on the fluorescent lifetimes of the liposomal complexes. The fluorescence decay of all three PS-containing liposomes showed that the local spatial confinement of PS (dictated by the PS chemistry) into different domains within the liposome directly controls the temperature-response. Membrane-bound photosensitizers were less sensitive to temperature effects as illustrated by the decay dynamics observed in solu, that is, they developed a unique decay behavior that correlated with the phase transition of the membrane. The fluorescent lifetime of PS-encapsulated liposomes in deoxygenated environments, relevant to oxygen independent type I phototoxicity, was also probed in the frequency-domain revealing that liposome-confined PS display very different trends than those observed in solu.
© (2007) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Ozzy Mermut, Jean-Pierre Bouchard, Jean-Francois Cormier, Kevin R. Diamond, Isabelle Noiseux, Marcia L. Vernon, and Michael S. Patterson "Frequency domain, time-resolved and spectroscopic investigations of photosensitizers encapsulated in liposomal phantoms", Proc. SPIE 6632, Therapeutic Laser Applications and Laser-Tissue Interactions III, 66320P (13 July 2007); https://doi.org/10.1117/12.728478
Lens.org Logo
CITATIONS
Cited by 2 scholarly publications.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Luminescence

Picosecond phenomena

Oxygen

Data modeling

Dynamic light scattering

Confocal microscopy

Particles

Back to Top