Photographic documentation and image-based wound assessment is frequently performed in medical diagnostics, patient care, and clinical research. To support quantitative assessment, photographic imaging is based on expensive and high-quality hardware and still needs appropriate registration and calibration. Using inexpensive consumer hardware such as smartphone-integrated cameras, calibration of geometry, color, and contrast is challenging. Some methods involve color calibration using a reference pattern such as a standard color card, which is located manually in the photographs. In this paper, we adopt the lattice detection algorithm by Park et al. from real world to medicine. At first, the algorithm extracts and clusters feature points according to their local intensity patterns. Groups of similar points are fed into a selection process, which tests for suitability as a lattice grid. The group which describes the largest probability of the meshes of a lattice is selected and from it a template for an initial lattice cell is extracted. Then, a Markov random field is modeled. Using the mean-shift belief propagation, the detection of the 2D lattice is solved iteratively as a spatial tracking problem. Least-squares geometric calibration of projective distortions and non-linear color calibration in RGB space is supported by 35 corner points of 24 color patches, respectively. The method is tested on 37 photographs taken from the German Calciphylaxis registry, where non-standardized photographic documentation is collected nationwide from all contributing trial sites. In all images, the reference card location is correctly identified. At least, 28 out of 35 lattice points were detected, outperforming the SIFT-based approach previously applied. Based on these coordinates, robust geometry and color registration is performed making the photographs comparable for quantitative analysis.
Calciphylaxis is a rare disease that has devastating conditions associated with high morbidity and mortality. Calciphylaxis is characterized by systemic medial calcification of the arteries yielding necrotic skin ulcerations. In this paper, we aim at supporting the installation of multi-center registries for calciphylaxis, which includes a photographic documentation of skin necrosis. However, photographs acquired in different centers under different conditions using different equipment and photographers cannot be compared quantitatively. For normalization, we use a simple color pad that is placed into the field of view, segmented from the image, and its color fields are analyzed. In total, 24 colors are printed on that scale. A least-squares approach is used to determine the affine color transform. Furthermore, the card allows scale normalization. We provide a case study for qualitative assessment. In addition, the method is evaluated quantitatively using 10 images of two sets of different captures of the same necrosis. The variability of quantitative measurements based on free hand photography is assessed regarding geometric and color distortions before and after our simple calibration procedure. Using automated image processing, the standard deviation of measurements is significantly reduced. The coefficients of variations yield 5-20% and 2-10% for geometry and color, respectively. Hence, quantitative assessment of calciphylaxis becomes practicable and will impact a better understanding of this rare but fatal disease.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.