The Subaru Pathfinder Instrument for Detecting Exoplanets and Recovering Spectra (SPIDERS) has been built from the ground-up to demonstrate the fast-atmospheric self-coherent camera technique on-sky for the first time. This technique uses a common-path interferometer to measure and suppress speckles in real-time to build a dark hole, and to enable hyperspectral coherent differential imaging post-processing. These promise more than a hundred times improvement in sensitivity to young giant planets and debris disks around bright stars compared with previous, speckle-limited instruments. We will present SPIDERS, its laboratory performance on post-AO residuals, and an update on SPIDERS’ commissioning at Subaru.
The imaging search for exoplanets is mainly limited by quasi-static speckle noise that have lifetimes between milliseconds and hours. Attempts to remove this noise using post-processing by building a point spread function (PSF) model from diversity in time, wavelength, and so-forth are limited to a small improvement due to the evolution of the noise along these same axes. The Calibration 2 (CAL2) system, being built by an international team, is a National Research Council of Canada (NRC) funded facility-class focal plane wavefront sensor for the Gemini Planet Imager 2 (GPI2) upgrade. The project consists of a complete rebuild of the GPI calibration (CAL) system. Based on the self-coherent camera concept and the FAST focal plane mask, a fraction of the near-infrared (NIR) science bandpass is extracted using a new dichroic wheel to perform focal plane wavefront sensing, with the goal to do science while also improving the contrast for the GPI2 IFS, up to a factor of 100x on bright stars. The project is at the final design review stage, and construction is expected to start summer/fall 2024, with assembly late fall 2024, and shipping to the Gemini North observatory middle of 2025.
Detecting and characterizing Earth-size exoplanets by imaging around Sun-like stars to search for life signatures is a monumental challenge, requiring advanced coronagraph designs and picometer-level wavefront control to achieve 1010 contrast at separations of only a few lambda/D. While a dedicated space observatory may be required to achieve such extreme observations, a new concept is presented to achieve an intermediate sky-limited 108 visible-band contrast using ground-based 8 to 30m class telescopes. STARLITE (Superluminous Tomographic Atmospheric Reconstruction with Laser-beacons for Imaging Terrestrial Exoplanets) consists of a satellite constellation located on a highly-elliptical, 350, 000km apogee orbit that will allow ∼hours-long observations of astronomical targets. When the constellation surrounds a target, the onboard laser on each satellite will generate extremely bright unresolved off-axis guide stars for adaptive optics, with an exoplanet imaging goal to reach closed-loop Angstrom-level residuals on a science target. In this paper I will present preliminary end-to-end simulations of a five laser-beacon optical system through the atmosphere to estimate the wavefront reconstruction accuracy towards a science target.
The NRC integrated modelling (NRCim) toolset has been developed at the NRC Herzberg Astronomy and Astrophysics Research Centre (HAA) for many years and has been used to predict complex system performance for several projects (eg. TMT primary mirror, NFIRAOS, IRIS, GPI). Although extensive software validation has been completed to ensure the validity of the NRCim results, there has not previously been an opportunity to measure the delivered performance of an instrument and complete an experimental validation of the NRCim toolset. With the recent assembly and testing of the SPIDERS instrument (Subaru Pathfinder Instrument for Detecting Exoplanets & Retrieving Spectra), our team at HAA has used the NRCim toolset to predict the performance of the SPIDERS instrument and subsequently completed directly measurements of the performance in the presence of prescribed disturbances. The measurements of the SPIDERS performance are compared with the NRCim-predicted performance providing a direct validation of the NRCim toolset.
In the search for life in our galaxy, and for understanding the origins of our solar system, the direct imaging and characterization of Earth-like exoplanets is key. In a step towards achieving these goals, the Superluminous Tomographic Atmospheric Reconstruction with Laser-beacons for Imaging Terrestrial Exoplanets (STARLITE) mission uses five CubeSats in a highly elliptical orbit as artificial guide stars to enable tomographic reconstruction of the atmosphere for extreme multi-conjugate adaptive optics (MCAO). Through the use of current and next-generation extremely-large ground-based telescopes, the STARLITE constellation at its ∼350,000 km apogee can provide brighter than -10 magnitude artificial guide stars from a 10 cm launching telescope in a sub-arcminute field of view for up to an hour. Careful selection and design of the ∼760 nm on-board laser will allow O2 detection and characterization of exoplanet atmospheres. At a size of 12U, each satellite weighs only 19 kg and utilizes mostly commercially available off-the-shelf components to keep costs per satellite around $2M. In this paper, we will present the satellite mission concept and early system design for the STARLITE constellation.
Facility-class high-contrast exoplanet imaging systems are currently limited by non-common path quasi-static speckles. Due to these aberrations, the raw contrast saturates after a few seconds. Several active wavefront correction techniques have been developed to remove this noise, with limited success. The NRC Canada is funding two projects, the SPIDERS pathfinder at the Subaru telescope (ETA 2023), and the CAL2 upgrade of the Gemini Planet Imager-2 (ETA 2024), to deploy a modified self-coherent camera (based on FAST) to measure the focal plane electric field, and to apply wavefront corrections in a closed-loop down to 10s of ms in a narrow band. The CAL2 project will focus on developing a facilityclass focal plane & Lyot-stop Low-order sensors using a CRED2 and a SAPHIRA-based camera, reaching up to a gain of 100x in contrast for bright stars. The SPIDERS pathfinder will have a similar configuration with the addition of an imaging Fourier transform spectrograph, allowing the acquisition of a 3.3” diagonal FOV to up to R-20,000 in the NIR to perform advanced spectral differential imaging at a high-spectral resolution to search and characterize exoplanets. These projects will serve as the foundation to develop similar systems for future ground-/space-based telescopes, and be an important step toward the development of instruments to search for life signatures in the atmosphere of exoplanets.
Optical chopping is a step taken to acquire calibrated images for high-contrast instruments such as our SPIDERS pathfinder, the CAL2.0 Gemini Planet Imager 2.0 upgrade, and other future projects. A unique design with smooth, continuous, and slow operation is needed to blink the fringed and unfringed images for dim and bright stars. The Ultra-Low Speed Optical Chopper (ULSOC) must blink between 0.05Hz and 100Hz with noise-free operation, stop in the ‘on’ or ‘off’ position, and have its timing controlled by an external trigger. Silicone dampers are utilized to ensure it is vibration-isolated from other components in the system. The self-calibrating system accepts any chopping wheel between 10-30 blades without the need to reconfigure software and will find its home position on every power-up. The ULSOC communicates serially to start and stop as needed during operation. Long operational periods (during on-sky observations) over a lifetime of at least 10 years, closed-loop stepper-servo control and optical feedback from the chopper wheel guarantees accurate and repeatable velocity and position. Initial prototypes show that smooth and noise-free operation are possible for the desired speed ranges, and vibration is well-managed. Further development this year will lead to a fully functional device to be tested on-sky with our SPIDERS instrument and lead the way to revisions down the road for future projects.
NRC’s NEW-EARTH Lab has demonstrated in the laboratory a Self-Coherent Camera (SCC) concept combined with a Tilt-Gaussian-Vortex focal plane mask (FPM). This speckle suppression technique, a.k.a. Fast Atmospheric SCC Technique (FAST), can enhance the contrast up to 100 times. Based on this success, NRC is now building SPIDERS, a visitor instrument for Subaru telescope to be installed on the infrared Nasmyth platform behind AO188 and the new Subaru Beam Switcher. The beam can be either shared between SPIDERS and SCExAO for simultaneous observations or sent entirely to only one instrument. SPIDERS should also benefit from the upcoming AO188 deformable mirror (DM) upgrade (64x64 actuators) turning A188 to AO3k. The key-components of SPIDERS are an ALPAO DM468, used as a second-stage AO correction, a pupil apodizer mask, a Tilt-Gaussian FPM, a Lyot stop, a beam-splitter feeding (i), a C-RED2 camera imaging a 5” FoV in narrow bands and (ii), an imaging Fourier-Transform Spectrograph and a SAPHIRA camera for spectroscopy up to R~20,000 over a 3.3” FoV. SPIDERS optical design is fully reflective up to the FPM to avoid chromatic aberrations and reduce the number of surfaces. Two off-axis ellipsoid mirrors are enough to form the pupil planes required on the DM and the apodizer mask, and the f/64 focus on the FPM. Only lenses are used from the FPM up to the C-RED2 camera to mitigate the sensitivity of the SCC to vibrations. The Lyot stop reflects the blocked light to a camera acting as a Low-Order Wavefront Sensor complementing the SCC focal plane wavefront sensing.
Direct imaging of exoplanets can be used to characterize exoplanets by spectroscopy of their atmospheres. Coronagraphs are required to suppress the diffraction effects by blocking the starlight, however, residual wavefront error scatters starlight in the science images, losing faint exoplanet photons in stellar noise. The performance of a coronagraphic system is thus contingent upon how efficiently the wavefront aberrations are minimized. Lyot-stop low-order wavefront sensor (LLOWFS) is a well-established sensor that senses the light rejected by the focal plane mask and corrects low-order aberrations upstream of the coronagraph. Previous versions of the LLOWFS sensed the residual starlight at the defocused focal plane. However, on the NRC's NEW-EARTH high-contrast imaging testbed, pupil-plane images of LLOWFS have been used to address both Zernike and Fourier modes. The goal of the testbed is to develop SPIDERS/Subaru which is the technology demonstrator of the CAL2 unit of the upcoming Gemini Planet Imager 2.0 (GPI 2.0). Both SPIDERS and CAL2 will address the low-order modes for stabilizing speckles, and demonstrate an active suppression of speckles using the Fast Atmospheric Self-Coherent Camera Technique (FAST) by creating a region of up to 10-7 contrast at small angles. Thus, obtaining sub-nanometric pointing stability using the LLOWFS is crucial for achieving stable contrast results on the bench and on-sky. Here, we present LLOWFS closed-loop laboratory results under simulated post-Adaptive Optics residuals of GPI 2.0 and simulations of the LLOWFS and FAST sensors for SPIDERS.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.