Optical system is an appealing system for quantum computation as it has tremendous scalability over typical matter-based qubit. This is thanks to its rich degree of freedom that allows multiplexing. A particularly promising approach is the time-domain multiplexing approach where large-scale entangled resources and their usages have been demonstrated. To achieve quantum computation, these resources have to be combined with a type of states called non-Gaussian states. Non-Gaussian state generation requires strong nonlinearity which is challenging in optical system, compared to the matter-based system. In this work, we explain our recent work in the generation of the non-Gaussian states for optical quantum computer. In the first half, we discuss the demonstration of cat-breeding protocol for the generation of Gottesman-Kitaev-Preskill (GKP) qubit. In the second half, we show the demonstration of generation of cat states from broadband light source. In the future, by combining these two techniques, we can achieve high-rate high-quality GKP states crucial for optical quantum computer.
We are now working on building a real machine of optical quantum computers based on quantum teleportation technology. The main ingredients are 10THz-bandwidth waveguide optical parametric amplifiers, 100GHz-bandwidth 5G/6G technologies and Wavelength Division Multiplexing(WDM), and nonlinear feedforward. By using these ingredients, we will build 100GHz-clock 100-multicore super quantum computers.
Enabling large-scale and high-speed quantum computation is a key to practical quantum computation. Continuous-variable approach in optical systems offer advantages in scalability and speed by leveraging their temporal degree of freedom and inherent large carrier frequency. In this paper, we investigate the generation and manipulation of quantum entanglement through a time-domain multiplexing approach. By employing time-domain multiplexing, we generate a two-dimensional cluster state—a universal resource for large-scale quantum computation—and perform quantum operations in the time domain with cluster state. Additionally, our ongoing research focuses on the generation and measurement of broadband optical quantum entanglement through an optical parametric oscillator, which holds potential as a foundation for high-speed quantum computing surpassing limitations of existing systems. By further engineering the quantum entanglement, we have also theoretically formulated a practical teleportation-based architectures for quantum computation in time domain. These advancements form the groundwork for the development of practical optical quantum computation.
Here we report our recent experimental progresses in optical quantum information processing. In particular, the following topics are included. First, we extend the heralding scheme to multi-mode states and demonstrate heralded creation of qutrit states. Next, we demonstrate storage of single-photon states and synchronized release of them. Then, we demonstrate real-time acquisition of quadrature values of heralded states by making use of an exponentially rising shape of wave-packets. Finally, we demonstrate cluster states in an arbitrarily long chain in the longitudinal direction.
We exploit quantum information processing on a traveling wave of light, expecting emancipation from thermal noise, easy coupling to fiber communication, and potentially high operation speed. Although optical memories are technically challenging, we have an alternative approach to apply multi-step operations on traveling light, that is, continuous-variable one-way computation. So far our achievement includes generation of a one-million-mode entangled chain in time-domain, mode engineering of nonlinear resource states, and real-time nonlinear feedforward. Although they are implemented with free space optics, we are also investigating photonic integration and performed quantum teleportation with a passive liner waveguide chip as a demonstration of entangling, measurement, and feedforward. We also suggest a loop-based architecture as another model of continuous-variable computing.
Quantum teleportation, a transfer protocol of quantum states, is the essence of many sophisticated quantum information protocols. There have been two complementary approaches to optical quantum teleportation: discrete variables (DVs) and continuous variables (CVs). However, both approaches have pros and cons. Here we take a “hybrid” approach to overcome the current limitations: CV quantum teleportation of DVs. This approach enabled the first realization of deterministic quantum teleportation of photonic qubits without post-selection. We also applied the hybrid scheme to several experiments, including entanglement swapping between DVs and CVs, conditional CV teleportation of single photons, and CV teleportation of qutrits. We are now aiming at universal, scalable, and fault-tolerant quantum computing based on these hybrid technologies.
Continuous-variable quantum information processing with optical field quadrature amplitudes is advantageous in deterministic creation of Gaussian entanglement. On the other hand, non-Gaussian state preparation and operation are currently limited, but heralding schemes potentially overcome this difficulty. Here, we summarize our recent progress in continuous-variable quantum optical experiments. In particular, we have recently succeeded in creation of ultra-large-scale cluster-type entanglement with full inseparability, multiplexed in the time domain; storage and on-demand release of heralded single-photon states, which is applied to synchronization of two heralded single-photon states; real-time quadrature measurements regarding non-Gaussian single-photon states with exponentially rising wavepackets; squeezing with relatively broader bandwidth by using triangle optical parametric oscillator.
We will briefly introduce our progress on quantum teleportation and its applications, especially on creation and detection of tripartite entanglement and making a quantum teleportation network.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.