Image registration is the process of aligning two or more images to achieve point-wise spatial correspondence. Typically, image registration is phrased as an optimization problem w.r.t. a spatial mapping that minimizes a suitable cost function and common approaches estimate solutions by applying iterative optimization schemes such as gradient descent or Newton-type methods. This optimization is performed independently for each pair of images, which can be time consuming. In this paper we present an unsupervised learning-based approach for deformable image registration of thoracic CT scans. Our experiments show that our method performs comparable to conventional image registration methods and in particular is able to deal with large motions. Registration of a new unseen pair of images only requires a single forward pass through the network yielding the desired deformation field in less than 0.2 seconds. Furthermore, as a novelty in the context of deep-learning-based registration, we use the edge-based normalized gradient fields distance measure together with the curvature regularization as a loss function of the registration network.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.