To advance the science of high power fiber lasers, in-house drawn specialty optical fibers are investigated. Ongoing research involves the fabrication and testing of Yb- and Tm-doped fibers at 1μm and 2μm. Using specialized fiber and pump mixing geometries, dopant profiles and system configurations, the performance of our in-house drawn active fibers has been examined. Results on a highly multi-mode, high average power pulsed Raman fiber amplifier pumped by a thin disc laser are presented. The Raman fiber is a large mode-area graded index fiber, also drawn in house. Finally, the development of capabilities for kilometer range propagation experiments of kW-level CW and TW-level pulsed lasers at the TISTEF laser range is reported.
We report on a 2 μm master oscillator power amplifier (MOPA) fiber laser system capable of producing 700 μJ pulse energies from a single 1.5 m long amplifier. The oscillator is a single-mode, thulium-doped fiber that is Q-switched by an acousto-optic modulator. The oscillator seeds the amplifier with 1 W average power at 20 kHz repetition rate. The power amplifier is a polarization-maintaining, large mode area thulium-doped fiber cladding pumped by a 793 nm fiber-coupled diode. The fiber length is minimized to avoid nonlinearities during amplification while simultaneously enabling high energy extraction. The system delivers 700 μJ pulse energies with 114 ns pulse duration and 14 W average power at 1977 nm center wavelength.
This work studies the accumulated nonlinearities when amplifying a narrow linewidth 2053 nm seed in a single mode Tm:fiber amplifier. A <2 MHz linewidth CW diode seed is externally modulated using a fiberized acousto-optic modulator. This enables independent control of repetition rate and pulse duration (>30 ns). The pulses are subsequently amplified and the repetition rate is further reduced using a second acousto-optic modulator. It is well known that spectral degradation occurs in such fibers for peak powers over 100's of watts due to self-phase modulation, four-wave mixing, and stimulated Raman scattering. In addition to enabling a thorough test bed to study such spectral broadening, this system will also enable the investigation of stimulated Brillouin scattering thresholds in the same system. This detailed study of the nonlinearities encountered in 2 μm fiber amplifiers is important in a range of applications from telecommunications to the amplification of ultrashort laser pulses.
By utilizing photon energies considerably smaller than the semiconductors’ energy band gap, space-selective modifications can be induced in semiconductors beyond the laser-incident surface. Previously, we demonstrated that back surface modifications could be produced in 500-600 μm thin Si and GaAs wafers independently without affecting the front surface. In this paper, we present our latest studies on trans-wafer processing of semiconductors using a self-developed nanosecond-pulsed thulium fiber laser operating at the wavelength 2 μm. A qualitative study of underlying physical mechanisms responsible for material modification was performed. We explored experimental conditions that will enable many potential applications such as trans-wafer metallization removal for PV cell edge isolation, selective surface annealing and wafer scribing. These processes were investigated by studying the influence of process parameters on the resulting surface morphology, microstructure and electric properties.
Ultra-large mode area thulium-doped photonic crystal fibers (Tm:PCF) have enabled the highest peak powers in 2
micron fiber laser systems to date. However, Tm:PCFs are limited by slope efficiencies of <50% when pumped with 790
nm laser diodes. A well-known alternative is pumping at 1550 nm with erbium/ytterbium-doped fiber (Er/Yb:fiber)
lasers for efficiencies approaching ~70%. However, these 1550 nm pump lasers are also relatively inefficient
themselves. A recently demonstrated and more attractive approach to enable slope efficiencies over 90% in thuliumdoped
step-index fibers is resonant pumping (or in-band pumping). This utilizes a high power thulium fiber laser
operating at a shorter wavelength as the pump. In this manuscript, we describe an initial demonstration of resonant
pumping in Tm:PCF. While the extracted power was still in the exponential regime due to pump power limitations, slope
efficiencies in excess of ~64 have been observed, and there is still room for improvement. These initial results show
promise for applying resonant pumping in Tm:PCF to improve efficiencies and facilitate high power scaling in ultralarge
mode area systems.
Next-generation infrared (IR) optical components based on chalcogenide glasses (ChGs) may include structures which benefit from the enhanced optical function offered by spatially modifying regions with a nanocrystalline phase. Such modification may be envisioned if the means by which such spatial control of crystallization can be determined using the advantages offered through three-dimensional direct laser write (DLW) processes. While ChGs are well known to have good transparency in the IR, they typically possess lower thresholds for photo- and thermally- induced property changes as compared to other glasses such as silicates. Such low thresholds can result in material responses that include photoexpansion, large thermo-optic increases, mechanical property changes, photo-induced crystallization, and ablation. The present study examines changes in ChG material response realized by exposing the material to different laser irradiation conditions in order to understand the effects of these conditions on such material property changes. Thresholds for photoexpansion and ablation were studied by varying the exposure time and power with sub-bandgap illumination and evidence of laser induced phase change were examined. Simulations were carried out to estimate the temperature increase from the irradiation and the tolerances and stability of the calculations were examined. The models suggest that the processes may have components that are non-thermal in nature.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.