Super resolution (SR) imaging is currently conducted using fragile ultrasound contrast agents. This precludes using the full acoustic pressure range, and the distribution of bubbles has to be sparse for them to be isolated for SR imaging. Images have to be acquired over minutes to accumulate enough positions for visualizing the vasculature. A new method for SUper Resolution imaging using the Erythrocytes (SURE) as targets is introduced, which makes it possible to maximize the emitted pressure for good signal-to-noise ratios. The abundant number of erythrocyte targets make acquisition fast, and the SURE images can be acquired in seconds. A Verasonics Vantage 256 scanner was used in combination with a GE L8-18iD linear array probe operated at 10 MHz for a wavelength of 150 μm. A 12 emissions synthetic aperture ultrasound sequence was employed to scan the kidney of a Sprague-Dawley rat for 24 seconds to visualize its vasculature. An ex vivo micro-CT image using the contrast agent Microfil was also acquired at a voxel size of 22.6 μm for validating the SURE images. The SURE image revealed vessels with a size down to 29 μm, five times smaller than the ultrasound wavelength, and the dense grid of vessels in the full kidney was reliably shown for scan times between 1 to 24 seconds. Visually the SURE images revealed the same vasculature as the micro-CT images. SURE images are acquired in seconds rather than minutes without contrast injection for easy clinical use, and they can be measured at full regulatory levels for pressure, intensity, and probe temperature.
Recent developments in multispectral X-ray detectors allow for an efficient identification of materials based on their chemical composition. This has a range of applications including security inspection, which is our motivation. In this paper, we analyze data from a tomographic setup employing the MultiX detector, that records projection data in 128 energy bins covering the range from 20 to 160 keV. Obtaining all information from this data requires reconstructing 128 tomograms, which is computationally expensive. Instead, we propose to reduce the dimensionality of projection data prior to reconstruction and reconstruct from the reduced data. We analyze three linear methods for dimensionality reduction using a dataset with 37 equally-spaced projection angles. Four bottles with different materials are recorded for which we are able to obtain similar discrimination of their content using a very reduced subset of tomograms compared to the 128 tomograms that would otherwise be needed without dimensionality reduction.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.